CIVIL ENGINEERING ENVIRONMENTAL SURVEYING LANDSCAPE ARCHITECTURE GEOTECHNICAL

STORMWATER MANAGEMENT REPORT

Clinton Commons Block 14 Lots 32 Town of Clinton, Hunterdon County, New Jersey

> Prepared For: Clinton Moebus 34, LLC C/O David Meiskin 9 Kent Place, Freehold, New Jersey 07728

January 30, 2021

Wayne J. Ingram Professional Engineer N.J.P.E. NO. 24GB04258200

Headquarters 140 West Main Street | High Bridge, NJ 08829 T: 908.238.0544

Clinton | Asbury Park | Denville | Philadelphia

TABLE OF CONTENTS

TABLE (OF CONTENTS
LIST OF	APPENDICES
1.	Introduction
2.	Methodology
2.1.	Project Description
2.2.	Stormwater Runoff Quantity
2.3.	Stormwater Runoff Quality
2.4.	Groundwater Recharge
2.5.	Non-Structural Stormwater Management Strategies
2.6.	Stormwater Conveyance
3.	Stormwater Analysis
3.1.	Stormwater Runoff Quantity
3.2.	Stormwater Runoff Quality
3.3.	Groundwater Recharge
3.4.	Stormwater Management Maintenance Plan
3.5.	Soil Erosion and Sediment Control
4.	Conclusion

LIST OF APPENDICIES

Appendix A:	Exhibits
Appendix B:	Summary of Hydrologic Analysis and Runoff Quantity
	Calculations
Appendix C:	Existing Hydrologic Analysis and Runoff Quantity Calculations
Appendix D:	Proposed Hydrologic Analysis and Runoff Quantity Calculations
Appendix E:	Storm Sewer Sizing Calculations
Appendix F:	Quality Storm Hydrologic Analysis and Runoff Quantity
**	Calculations
Appendix G:	Groundwater Recharge Analysis
Appendix H:	Soil Erosion Measures
Appendix I:	Stormwater Management Maintenance Plan (Attached
**	Separately)
Appendix J:	Soil log
Appendix K:	Groundwater Mounding Analysis
Appendix L:	Pre-Development and Post-Development Drainage Area plans.

1. INTRODUCTION

Engineering & Land Planning Associates, Inc. has prepared this Stormwater Management Report on behalf of Clinton Moebus 34, LLC, to document the design methodology and the associated calculations for the project's stormwater management system. The project is located on State Highway 31 on Block 14, Lots 32, 32.01 & 32.02 in the Town of Clinton, Hunterdon County, New Jersey. The subject property currently consists of open farm field.. The project proposes to build 3 Retail buildings consists of 30,559 s.f. and 56 townhome units with its associated improvements. The design incorporates stormwater management measures which meet the NJDEP Phase II Stormwater Regulations for stormwater quantity, quality, and groundwater recharge.

2. METHODOLOGY

2.1 Product Description

The existing property totals 28.06 acres and contains farm field. The property is bound to the north by New Jersey State Highway 31, to the west the South branch of Raritan River and wooded area and to the north and east by residential homes. The project consists of the construction of a 56 Townhouses and three pad sites for retail use. The project is considered a major project in accordance with the NJDEP Phase II Stormwater Regulations, as it will include more than 1.0 acre of disturbance and creates more than $\frac{1}{4}$ acre of new impervious surface. Stormwater management measures have been provided in accordance with NJDEP's Phase II Stormwater regulations.

The conversion of the land cover from farm field to a lawn and impervious surface results in a increase in storm water runoff as a result of the project. The project proposes one storm water infiltration basin that collect the runoff from the proposed roads, driveways and portions of the lawns. The site has Karst formation where infiltration is not advisable. Therefore, have infiltration is confined to the extents of the basin which is located at the most downstream location. The Infiltration Basin outflow discharge to the South branch of Raritan River. The Infiltration basin also provides water quality by recharging the water quality storm to ground. The Infiltration basin also provides the required ground water recharge and reduction in the peak runoff from site. These stormwater management measures meet the NJDEP's Phase II regulations for water quantity, quality, and groundwater recharge.

We have also provided the soils map for the property in Appendix A of this report. The report also includes each soil type that is located on site and the respective Hydrologic Soil Group of each soil in description of the soil.

2.2 Stormwater Runoff Quantity

The stormwater quantity runoff analysis has been performed utilizing the Soil Conservation Service (SCS) Technical Release 55 (TR-55) "Urban Hydrology for Small Watersheds," revised June 1986. The site runoff has been calculated for the 2 year, 10 year, and 100 year storm frequencies in accordance with NJDEP's storm water regulations. (N.J.A.C. 7:8-5.4). This project will reduce the site runoff for the calculated storms below that of the existing condition as required during the 2, 10, and 100 year storm events, while maintaining the existing drainage patterns in accordance with N.J.A.C. 7:8-5.4 (3) iii. (see Appendices B, C, and D).

The analysis utilized the SCS Type III-24 hour rainfall distribution. The time of concentration (Tc) calculations were calculated based on the TR-55 methodology. Several potential Tc flow paths were analyzed in order to determine the most appropriate flow path. CN values were calculated for each drainage area utilizing the soil data from Morris County Soil Survey. The summary of results and supporting calculations for the existing and proposed stormwater quantity runoff analysis can be found in Appendices B-E of this report.

2.3 Stormwater Runoff Quality

The storm water runoff quality analysis has been performed in accordance with NJDEP's Storm Water Management Regulations (N.J.A.C. 7:8-5.5). This storm water management plan serves to reduce the post-construction load of Total Suspended Solids (TSS) generated from the water quality design storm by 80 percent, as an annual average. This reduction has been applied to all areas of new development on the site. The water quality design storm consists of 1.25 inches of rain falling in 2 hours with the NJDEP distribution as illustrated in of N.J.A.C. 7:8-5.5 "Table 1 - Water Quality Design Storm Distribution" (refer to Appendix F).

A infiltration basin has been employed to obtain the required 80% TSS removal.

2.4 Groundwater Recharge

A groundwater recharge analysis has been performed in accordance with NJDEP's Stormwater Management Rules (N.J.A.C. 7:8-5.4). The New Jersey Groundwater Recharge Spreadsheet (NJGRS) Version 2.0 (updated November 2003) was utilized to determine the groundwater recharge associated with the site. Computations of the pre-development and post-development annual groundwater recharge rate and the annual recharge deficit was prepared based on the New Jersey Geological Survey Report GSR-32 "A Method for Evaluating Ground-Water Recharge Areas in New Jersey", which is incorporated into the NJGSR spreadsheet (Refer to Appendix I of this report).

2.5 Non-Structural Stormwater Management Strategies

As per N.J.A.C. 7:8-5.3 requirements non-structural stormwater strategies have been incorporated into the design to the maximum extent practicable:

The project site is currently an open farm field that is susceptible to erosion and sediment loss due to steep slopes on the property. The proposed improvement will eliminate these susceptible areas since the project area will become maintained lawns, dwellings, driveways, a road is also proposed to break up the over lands flow and contain in underground storm water system. The water quality will benefit because all the impervious surfaces are being recharge using infiltration basin. The impervious surfaces are minimized on the project site to meet current codes and the runoff over the impervious surfaces flows into a proposed stormwater system.

Natural drainage features and vegetation are maintained and maximized where possible.

The Time of Concentration and flow path is generally maintained from the existing to the proposed condition.

Land disturbance is being minimized and there is minimal clearing needed since the site is currently existing farm field. The land disturbance is generally limited to the existing developed area.

Soil compaction will be minimized and any areas of over compaction will be mediated.

Low maintenance trees and native grasses are proposed to encourage retention of all plantings.

The use of natural open channel swales is utilized to convey the stormwater runoff through portions of the site where it is feasible.

The stormwater control system was designed to prevent trash and debris from draining into the existing wetlands located to the south of the project site. This is accomplished through the use of trash racks, grates and stormwater filtration units. The stormwater system will be cleaned and trash/debris will be removed according the Stormwater Management Maintenance Plan.

2.6 Stormwater Conveyance

The storm sewer hydraulics is based upon the Manning Equation as defined in the "Handbook of Hydraulics," by Brater and King, Sixth Edition. Storm sewer capacity is based on full depth gravity flow. The project has designed to convey water via closed pipe systems to the detention basin. Refer to Appendix E for calculations. The storm system is designed for 25 years storm freq.

3. STORMWATER ANALYSIS

3.1 Stormwater Runoff Quantity

The Existing Drainage Area Plan (Appendix J) located in the site improvement plans illustrates the existing drainage area. The composite curve numbers (CN), time of concentrations (Tc) have been calculated utilizing the TR-55 method for each drainage area. A runoff hydrograph has been calculated for the 2, 10, and 100 year storms. The peak runoff (Q cfs) has been obtained from the runoff hydrograph for each drainage area.

The existing site contains one drainage area (DA#1) which leaves the site in a westerly direction. The DA#1 is consists of 33.69 ac. and contains 0.98 ac of impervious area. Runoff generally sheet flows across the site towards the wetlands and stream located on the westerly portion of the property. Refer to Appendices B and C for a summary of the composite curve numbers (CN), pre-development peak discharge rates for the 2, 10, and 100 year storms, and the associated runoff hydrographs.

The proposed site improvements will not result in significant modifications to the overall drainage area layout. The Proposed Drainage Area Plan, located on Appendix H of the site improvement plans illustrates the proposed drainage areas for the post-development condition.

The majority of the stormwater runoff from proposed drainage area PDA#1 will enter the stormwater system via inlets located along the road before ultimately discharging into the wetland areas after in the western area of the property after treating runoff. This Drainage are PDA#1 is consists of 19.80 ac which contains 9.11 ac on impervious area. The remaining areas PDA#2 will flow overland consistent with the existing condition. The PDA#2 is consist of 13.89 ac and contains no impervious area. The proposed storm water discharges to levels below that of the existing condition in DA#1 for the 2, 10, and 100 year storms in accordance with NJDEP requirements. This meets the NJDEP Phase II stormwater quantity standards.

3.2 Stormwater Runoff Quality

Runoff quality has achieved the required TSS removal, in accordance with NJDEP standards. The water quality storm hydrographs are contained in Appendix F. Quality treatment has been provided through using Infiltration basin (80% TSS removal rate). The proposed roads, sidewalks and driveways are directed through proposed Infiltration basin resulting in an 80% TSS removal rate in accordance with the NJDEP Phase II standards.

3.3 Groundwater Recharge

An annual recharge deficit of 465,612 CF is observed in the post-development condition. This is achieved through the permanent conversion of existing farm areas to a lawn surface and impervious surface. The proposed infiltration basin is designed to provide required recharge to mitigate the reduction in the ground water recharge due to proposed development. The analysis has been performed based upon the approved NJDEP Recharge spreadsheet and can be found in Appendix H.

3.4 Stormwater Management Maintenance Plan

A recommended Stormwater Management Maintenance Plan has been established for this site in order to maintain the performance and efficiency of the proposed stormwater management basin. The plan is contained in Appendix J of this report.

3.5 Soil Erosion and Sediment Control

Soil Erosion and Sediment Control measures have been designed for the stormwater management system to ensure that water quality is maintained and that the system can safely and adequately control runoff from the property. Design calculations for the conduit outlet protection can be found in Appendix I of this report.

4. CONCLUSIONS

In conclusion, the proposed design includes a proposed storm water management system for the property that meets all of the quantity, quality and recharge requirements outlined in the Storm water Management Rules of N.J.A.C. 7:8. The proposed storm management basin will provides the required 80% TSS removal requirements, it also provides the required recharge and reduce the peak runoff from the site in accordance with quantity requirement.

The summary table provided in this sections shows that the project will meet the peak rate reduction criteria of the storm water rules.

5.1 : Pre-development And Post-development Peak Runoff Results Summary

Pre-Development Peak Runoff

Storm Freq.	To Stream	Total Pre-Dev Flow	Total Pre-Dev Flow From Distrurbed	% Flow Reduction Required From Developed Area	Flow Reduction Required From Developed Area	Max Post- Dev Peak Flow Allowable From Site
(Col #1)	(Col #2)	(Col #3)	(Col #4)	(Col #5)	(Col #6)=#4*#5	(Col #7)=#3-#6
(years)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(%)	(c.f.s.)	(c.f.s)
	40.70	40.70	5.07	500/	0.04	0.05
2	12.78	12.78	5.67	50%	2.84	9.95
10	43.73	43.73	19.41	25%	4.85	38.88
100	117.79	117.79	52.27	20%	10.45	107.34

Post-Development Peak Runoff Summary

Storm	То	Total Post-Dev	Reduction in
Freq.	Stream	Peak Runoff	Peak Runoff
(Col #8)	(Col #9)	(Col #10)	(Col #11)=#3-#10
(years)	(c.f.s.)	(c.f.s.)	(c.f.s.)
2	9.22	9.22	3.57
10	30.65	30.65	13.08
100	93.21	93.21	24.58

APPENDIX – A:

EXHIBITS

	MAP L	EGEND)	MAP INFORMATION			
Area of Int	nterest (AOI) Area of Interest (AOI)		Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.			
Soils	Soil Map Unit Polygons	â	Very Stony Spot	Warning: Soil Map may not be valid at this scale.			
~	Soil Map Unit Lines Soil Map Unit Points	$ \land $	Wet Spot Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil			
Special	Point Features Blowout	Water Fea	Special Line Features	contrasting soils that could have been shown at a more detailed scale.			
×	Borrow Pit Clay Spot	Transport	tation Rails	Please rely on the bar scale on each map sheet for map measurements.			
\$ \$	Closed Depression Gravel Pit	~	Interstate Highways US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:			
:. ©	Gravelly Spot Landfill	~	Major Roads Local Roads	Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator			
A.	Lava Flow Marsh or swamp	Backgrou	ind Aerial Photography	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more			
☆ ©	Mine or Quarry Miscellaneous Water			accurate calculations of distance or area are required.			
0	Perennial Water Rock Outcrop			of the version date(s) listed below.			
+	Saline Spot			Survey Area Data: Version 15, Sep 16, 2019			
•••	Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.			
♦	Slide or Slip			Date(s) aerial images were photographed: Mar 31, 2014—Apr 2, 2017			
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.			

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BhnB	Birdsboro silt loam, 2 to 6 percent slopes	5.1	15.5%
DufB	Duffield silt loam, 2 to 6 percent slopes	0.3	1.1%
DufC2	Duffield silt loam, 6 to 12 percent slopes, eroded	21.3	65.1%
DugDh	Duffield silt loam, 12 to 18 percent slopes, very rocky	2.6	8.0%
HcuAt	Hatboro-Codorus complex, 0 to 3 percent slopes, frequently flooded	3.3	10.2%
ParEe	Parker cobbly loam, 18 to 40 percent slopes, extremely stony	0.0	0.1%
WATER	Water	0.0	0.1%
Totals for Area of Interest		32.7	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit

descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Hunterdon County, New Jersey

BhnB—Birdsboro silt loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: Idv5 Elevation: 200 to 1,000 feet Mean annual precipitation: 30 to 64 inches Mean annual air temperature: 46 to 79 degrees F Frost-free period: 131 to 178 days Farmland classification: All areas are prime farmland

Map Unit Composition

Birdsboro and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Birdsboro

Setting

Landform: Stream terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Old alluvium derived from sandstone and siltstone and/or shale

Typical profile

Ap - 0 to 8 inches: silt loamBA - 8 to 13 inches: silt loamBt - 13 to 29 inches: silt loamBC - 29 to 40 inches: silt loamC - 40 to 60 inches: stratified sand to silty clay loam2C - 60 to 80 inches: stratified sand to fine sand

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: High (about 10.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Bucks

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

Raritan, rarely flooded

Percent of map unit: 5 percent Landform: Stream terraces Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Duffield

Percent of map unit: 5 percent Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

DufB—Duffield silt loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: Idvs Elevation: 300 to 1,000 feet Mean annual precipitation: 30 to 64 inches Mean annual air temperature: 46 to 79 degrees F Frost-free period: 131 to 178 days Farmland classification: All areas are prime farmland

Map Unit Composition

Duffield and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Duffield

Setting

Landform: Hills Landform position (two-dimensional): Summit Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Fine-loamy residuum weathered from limestone

Typical profile

Ap - 0 to 9 inches: silt loam BA - 9 to 14 inches: silt loam Bt1 - 14 to 28 inches: silt loam Bt2 - 28 to 42 inches: silt loam C - 42 to 56 inches: loam R - 56 to 80 inches: unweathered bedrock

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: 48 to 60 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: High (about 11.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Turbotville

Percent of map unit: 5 percent Landform: Depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

Washington

Percent of map unit: 5 percent Landform: Hills Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

DufC2—Duffield silt loam, 6 to 12 percent slopes, eroded

Map Unit Setting

National map unit symbol: 11mfh

Elevation: 300 to 1,000 feet *Mean annual precipitation:* 30 to 64 inches *Mean annual air temperature:* 46 to 79 degrees F *Frost-free period:* 131 to 178 days *Farmland classification:* Farmland of statewide importance

Map Unit Composition

Duffield, eroded, and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Duffield, Eroded

Setting

Landform: Hills Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Fine-loamy residuum weathered from limestone

Typical profile

Ap - 0 to 9 inches: silt loam BA - 9 to 14 inches: silt loam Bt1 - 14 to 28 inches: silt loam Bt2 - 28 to 42 inches: silt loam C - 42 to 56 inches: loam R - 56 to 80 inches: unweathered bedrock

Properties and qualities

Slope: 6 to 12 percent
Depth to restrictive feature: 48 to 60 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: High (about 11.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Washington

Percent of map unit: 5 percent Landform: Hills Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Turbotville

Percent of map unit: 5 percent Landform: Depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

DugDh—Duffield silt loam, 12 to 18 percent slopes, very rocky

Map Unit Setting

National map unit symbol: 1lmfk Elevation: 300 to 1,300 feet Mean annual precipitation: 30 to 64 inches Mean annual air temperature: 46 to 79 degrees F Frost-free period: 131 to 178 days Farmland classification: Not prime farmland

Map Unit Composition

Duffield, eroded, very rocky, and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Duffield, Eroded, Very Rocky

Setting

Landform: Hills Landform position (two-dimensional): Summit Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Fine-loamy residuum weathered from limestone

Typical profile

Ap - 0 to 9 inches: silt loam BA - 9 to 14 inches: silt loam Bt1 - 14 to 28 inches: silt loam Bt2 - 28 to 42 inches: silt loam C - 42 to 56 inches: loam R - 56 to 80 inches: unweathered bedrock

Properties and qualities

Slope: 12 to 18 percent
Depth to restrictive feature: 48 to 60 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches

Frequency of flooding: None *Frequency of ponding:* None *Available water storage in profile:* High (about 11.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Klinesville

Percent of map unit: 5 percent Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Turbotville

Percent of map unit: 5 percent Landform: Depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

Washington

Percent of map unit: 5 percent Landform: Hills Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

HcuAt—Hatboro-Codorus complex, 0 to 3 percent slopes, frequently flooded

Map Unit Setting

National map unit symbol: 2w06g Elevation: 90 to 680 feet Mean annual precipitation: 47 to 51 inches Mean annual air temperature: 48 to 57 degrees F Frost-free period: 180 to 210 days Farmland classification: Not prime farmland

Map Unit Composition

Hatboro, frequently, and similar soils: 60 percent Codorus, occasional, and similar soils: 35 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hatboro, Frequently

Setting

Landform: Flood plains Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Concave Parent material: Loamy alluvium derived from greenstone and/or phyllite and/or quartzite and/or schist

Typical profile

A - 0 to 11 inches: silt loam Bg1 - 11 to 18 inches: silt loam Bg2 - 18 to 29 inches: silt loam BCg - 29 to 44 inches: silt loam Cg1 - 44 to 55 inches: silty clay loam Cg2 - 55 to 80 inches: sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: Frequent
Frequency of ponding: Frequent
Available water storage in profile: High (about 9.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Description of Codorus, Occasional

Setting

Landform: Flood plains Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Concave Parent material: Loamy alluvium derived from phyllite and/or mica schist and/or greenstone and/or old loamy alluvium derived from phyllite and/or mica schist and/or greenstone

Typical profile

Ap - 0 to 11 inches: silt loam Bw1 - 11 to 18 inches: silt loam

- Bw2 18 to 40 inches: gravelly silt loam
- 2C 40 to 80 inches: very gravelly silt loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 18 to 30 inches
Frequency of flooding: Occasional
Frequency of ponding: None
Available water storage in profile: Moderate (about 7.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: C Hydric soil rating: No

Minor Components

Delanco

Percent of map unit: 5 percent Landform: Stream terraces Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

ParEe—Parker cobbly loam, 18 to 40 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: 1Is04 Elevation: 250 to 1,200 feet Mean annual precipitation: 30 to 64 inches Mean annual air temperature: 46 to 79 degrees F Frost-free period: 131 to 178 days Farmland classification: Not prime farmland

Map Unit Composition

Parker, extremely stony, and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Parker, Extremely Stony

Setting

Landform: Hills Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Nose slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 9 inches: cobbly loam Bw - 9 to 22 inches: cobbly sandy loam C - 22 to 41 inches: very cobbly sandy loam R - 41 to 80 inches: unweathered bedrock

Properties and qualities

Slope: 18 to 40 percent
Percent of area covered with surface fragments: 9.0 percent
Depth to restrictive feature: 39 to 60 inches to lithic bedrock
Natural drainage class: Somewhat excessively drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Gladstone

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

WATER—Water

Map Unit Setting

National map unit symbol: ldyj Mean annual precipitation: 30 to 64 inches Mean annual air temperature: 46 to 79 degrees F Frost-free period: 131 to 178 days Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

APPENDIX - B:

SUMMARY OF HYDROLOGIC ANALYSIS AND RUNOFF QUANTITY CALCULATIONS

Hydrograph Return Period Recap Hydrafilw Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Hyd.	Hydrograph	Inflow				Hydrograph					
No.	type (origin)	Hyd(s)	1-Yr	2-Yr	3-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	description
1	SCS Runoff			12.78			43.73	68.63		117.79	Pre-Dev To Stream
2	SCS Runoff			5.670			19.41	30.45		52.27	Pre-Dev Dist
3	SCS Runoff			27.25			40.57	49.51		65.39	Post-Dev Imp To Basin
4	SCS Runoff			3.498			13.00	20.71		36.04	Post-Dev Perv. To Basin
5	SCS Runoff			5.268			18.03	28.29		48.56	Post-Dev To Stream
6	SCS Runoff			0.959			1.450	1.778		2.359	Post-Dev To Trench Drain
7	Combine	3, 4,		29.35			51.42	67.62		98.12	Post-Dev Total To Basin
8	Reservoir	7		4.543			16.24	27.12		48.95	Basin Routing
9	Combine	5, 6, 8		9.215			30.65	51.44		93.21	Post-Dev Total to Stream
10	Reservoir	7		0.000			3.055	15.92		68.73	Spillway Routing

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	12.78	3	732	63,554				Pre-Dev To Stream
2	SCS Runoff	5.670	3	732	28,202				Pre-Dev Dist
3	SCS Runoff	27.25	3	726	94,348				Post-Dev Imp To Basin
4	SCS Runoff	3.498	3	732	18,616				Post-Dev Perv. To Basin
5	SCS Runoff	5.268	3	732	26,202				Post-Dev To Stream
6	SCS Runoff	0.959	3	726	3,187				Post-Dev To Trench Drain
7	Combine	29.35	3	729	112,963	3, 4,			Post-Dev Total To Basin
8	Reservoir	4.543	3	768	83,557	7	226.90	63,052	Basin Routing
9	Combine	9.215	3	735	112,946	5, 6, 8			Post-Dev Total to Stream
10	Reservoir	0.000	3	n/a	0	7	228.71	112,963	Spillway Routing
326	06.gpw				Return P	eriod: 2 Ye	ar	Wednesday	y, Feb 3, 2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	43.73	3	732	167,433				Pre-Dev To Stream
2	SCS Runoff	19.41	3	732	74,299				Pre-Dev Dist
3	SCS Runoff	40.57	3	726	142,807				Post-Dev Imp To Basin
4	SCS Runoff	13.00	3	732	50,393				Post-Dev Perv. To Basin
5	SCS Runoff	18.03	3	732	69,031				Post-Dev To Stream
6	SCS Runoff	1.450	3	726	4,936				Post-Dev To Trench Drain
7	Combine	51.42	3	729	193,200	3, 4,			Post-Dev Total To Basin
8	Reservoir	16.24	3	744	163,779	7	228.01	91,044	Basin Routing
9	Combine	30.65	3	735	237,746	5, 6, 8			Post-Dev Total to Stream
10	Reservoir	3.055	3	843	58,972	7	229.55	138,824	Spillway Routing
32606.gpw				Return P	eriod: 10 Y	ear	Wednesday	y, Feb 3, 2021	

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	68.63	3	732	252,657				Pre-Dev To Stream
2	SCS Runoff	30.45	3	732	112,117				Pre-Dev Dist
3	SCS Runoff	49.51	3	726	175,445				Post-Dev Imp To Basin
4	SCS Runoff	20.71	3	732	76,715				Post-Dev Perv. To Basin
5	SCS Runoff	28.29	3	732	104,168				Post-Dev To Stream
6	SCS Runoff	1.778	3	726	6,117				Post-Dev To Trench Drain
7	Combine	67.62	3	729	252,160	3, 4,			Post-Dev Total To Basin
8	Reservoir	27.12	3	741	222,734	7	228.55	107,792	Basin Routing
9	Combine	51.44	3	735	333,018	5, 6, 8			Post-Dev Total to Stream
10	Reservoir	15.92	3	753	117,932	7	229.74	144,649	Spillway Routing
32606.gpw				Return P	eriod: 25 Y	ear	Wednesday	y, Feb 3, 2021	

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	117.79	3	732	424,064				Pre-Dev To Stream
2	SCS Runoff	52.27	3	732	188,179				Pre-Dev Dist
3	SCS Runoff	65.39	3	726	233,561				Post-Dev Imp To Basin
4	SCS Runoff	36.04	3	732	129,979				Post-Dev Perv. To Basin
5	SCS Runoff	48.56	3	732	174,837				Post-Dev To Stream
6	SCS Runoff	2.359	3	726	8,223				Post-Dev To Trench Drain
7	Combine	98.12	3	729	363,541	3, 4,			Post-Dev Total To Basin
8	Reservoir	48.95	3	738	334,107	7	229.42	134,858	Basin Routing
9	Combine	93.21	3	732	517,166	5, 6, 8			Post-Dev Total to Stream
10	Reservoir	68.73	3	735	229,312	7	230.16	158,345	Spillway Routing
326	06 apw				Potura P	eriod: 100	Vear	Wednesday	(Eab 3, 2021
326	32606.gpw				Return P	eriod: 100	Year	Wednesday	, Feb 3, 2021

APPENDIX - C:

EXISTING HYDROLOGIC ANALYSIS AND RUNOFF QUANTITY CALCULATIONS

Worksheet 2: Runoff Curve Number and Runoff

Project:	Moebus	By:	bh	Date	1/31/2021
Location:	Clinton	Checked:	Enter	Date	Enter
Circle One:	Present	Developed		DA#1	

1. Runoff Curve Number (CN)

Soil Name	Cover Description	CN*		Area	Product	
and	(cover type, treatment, and	Table	Table	Table		of
hydrologic	hydrologic condition;	2-2	2-3	2-4	acres	CN X area
group	percent impervious;				sq. mi.	
	unconnected/connected impervious				x %	
(Appendix A)	area ratio					
В	Open Space	61			29.15	1778.15
В	Wood - Grass Combination	55			3.40	187.00
С	Water	74			0.16	11.84
Any	Impervious Area	98			0.98	96.04
				Totals =	33.69	2073.03

* Use only one CN per line.

CN (weighted) <u>total product =</u> total area <u>2073</u> = 33.69

= 61.533

62

Use CN =

2. Runoff

- Frequencyyr.
- Rainfall, P (24 hour).....in.
- Runoff, Qin. (Use P and CN with Table 2-1, fig. 2-1, or eqs. 2-3 and 2-4)

Storm #7	1 :	Storm #2	Storm #3

D-2

Copied from:

(210-VI-TR-55, Second Ed., June 1986)
Worksheet 3: Time of Concentration (T_c) or Travel Time (T_t)

Project:	Moebus	E	Зу:		bh	Date	1/31/2021	
Location:	Clinton	(Checked	:	Enter	Date	Enter	
Circle One: Circle One:	<u>Present</u> Tc	[Develope Ft	ed through	subarea	DA#1		
NOTES:	Space for as many as two so worksheet Include a map, schematic, o	egments pe r descriptio	er flow typ n of flow	be can b segmer	e used for ea nts	ch		
Sheet flow (ap 1. Surface des 2. Manning's r 3. Flow length 4. Two-yr. 24- 5. Land Slope 6. Tt = 0.007 (n P ₂ ^{0.5} s ^{0.4}	<u>plicable to Tc only</u>) scription (table 3-1) roughness coeff., (table 3-1) , L (total L<= 150 ft.) hr rainfall, P2 n <u>L)^{0.8}</u>	Compute	ft/ft T _t ft/ft	 it. in nr.	Segment ID	Dense Gra 0.24 100 3.38 0.066 0.14	Enter ss 0.00	0.14
Shallow Conce 7. Surface des 8. Flow length 9. Watercours 10. Average ve 11. $T_c = _L_$ 3600V	entrated flow scription (paved or unpaved). , L e slope, s elocity, V (figure 3-1)	Compute ⁻	ft ft/ft ft/r T _t hr	 S	Segment ID	unpaved 1335 0.065169 4.1 0.09		0.09
Channel flow 12. Cross sect 13. Wetted per 14. Hydraulic r 15. Channel sl 16. Manning's 17. V = $1.49r^{2/3}$ n 18. Flow length 19. T _t = <u>L</u> 3600V 20. Watershed	ional flow area, a rimeter, p _w radius, r = a/p _w ope, s roughness coeff., n ³ s ^{1/2} n, L , l or subarea T _c or T _t (add T _t ir	Compute Compute \ Compute 1 steps 6, 1:	ft rft rft/ft /ft/s /ft f _t ft 1, and 19	2 t	Segment ID	Enter	Enter 	0.00
							Min=	14.01

Copied from:

(210-VI-TR-55, Second Ed., June 1986)

D-3

Worksheet 2: Runoff Curve Number and Runoff

Project:	Moebus	By:	bh	Date	2/3/2021
Location:	Clinton	Checked:	Enter	Date	Enter
Circle One:	Present	Developed	T	o Stream	

1. Runoff Curve Number (CN)

Soil Name	Cover Description	C	CN*		CN* Area		Area	Product
and	(cover type, treatment, and	Table	Table	Table	1	of		
hydrologic	hydrologic condition;	2-2	2-3	2-4	acres	CN X area		
group	percent impervious;				sq. mi.			
	unconnected/connected impervious				x %			
(Appendix A)	area ratio							
В	Open Space	61			14.60	890.60		
В	Wood - Grass Combination	55			0.20	11.00		
С	Water	74			0.00	0.00		
Any	Impervious Area	98			0.15	14.70		
				Totals =	14.95	916.30		

* Use only one CN per line.

CN (weighted) <u>total product =</u> total area <u>916.3</u> = 14.95

= 61.291

Use CN = 61

2. Runoff

- Frequencyyr.
- Rainfall, P (24 hour).....in.
- Runoff, Qin. (Use P and CN with Table 2-1, fig. 2-1, or eqs. 2-3 and 2-4)

Storm #1	Storm #2	Storm #3

D-2

Copied from:

(210-VI-TR-55, Second Ed., June 1986)

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Wednesday, Feb 3, 2021

Hyd. No. 1

Pre-Dev To Stream

Hydrograph type	= SCS Runoff	Peak discharge	= 12.78 cfs
Storm frequency	= 2 yrs	Time to peak	= 732 min
Time interval	= 3 min	Hyd. volume	= 63,554 cuft
Drainage area	= 33.690 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 14.00 min
Total precip.	= 3.38 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Wednesday, Feb 3, 2021

Hyd. No. 2

Pre-Dev Dist

Hydrograph type	= SCS Runoff	Peak discharge	= 5.670 cfs
Storm frequency	= 2 yrs	Time to peak	= 732 min
Time interval	= 3 min	Hyd. volume	= 28,202 cuft
Drainage area	= 14.950 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 14.00 min
Total precip.	= 3.38 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Wednesday, Feb 3, 2021

Hyd. No. 1

Pre-Dev To Stream

Hydrograph type	= SCS Runoff	Peak discharge	= 43.73 cfs
Storm frequency	= 10 yrs	Time to peak	= 732 min
Time interval	= 3 min	Hyd. volume	= 167,433 cuft
Drainage area	= 33.690 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 14.00 min
Total precip.	= 5.00 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Wednesday, Feb 3, 2021

Hyd. No. 2

Pre-Dev Dist

Hydrograph type	= SCS Runoff	Peak discharge	= 19.41 cfs
Storm frequency	= 10 yrs	Time to peak	= 732 min
Time interval	= 3 min	Hyd. volume	= 74,299 cuft
Drainage area	= 14.950 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 14.00 min
Total precip.	= 5.00 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Wednesday, Feb 3, 2021

Hyd. No. 1

Pre-Dev To Stream

Hydrograph type	= SCS Runoff	Peak discharge	= 68.63 cfs
Storm frequency	= 25 yrs	Time to peak	= 732 min
Time interval	= 3 min	Hyd. volume	= 252,657 cuft
Drainage area	= 33.690 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 14.00 min
Total precip.	= 6.09 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Wednesday, Feb 3, 2021

Hyd. No. 2

Pre-Dev Dist

Hydrograph type	= SCS Runoff	Peak discharge	= 30.45 cfs
Storm frequency	= 25 yrs	Time to peak	= 732 min
Time interval	= 3 min	Hyd. volume	= 112,117 cuft
Drainage area	= 14.950 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 14.00 min
Total precip.	= 6.09 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Wednesday, Feb 3, 2021

Hyd. No. 1

Pre-Dev To Stream

Hydrograph type	= SCS Runoff	Peak discharge	= 117.79 cfs
Storm frequency	= 100 yrs	Time to peak	= 732 min
Time interval	= 3 min	Hyd. volume	= 424,064 cuft
Drainage area	= 33.690 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 14.00 min
Total precip.	= 8.03 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Wednesday, Feb 3, 2021

Hyd. No. 2

Pre-Dev Dist

Hydrograph type	= SCS Runoff	Peak discharge	= 52.27 cfs
Storm frequency	= 100 yrs	Time to peak	= 732 min
Time interval	= 3 min	Hyd. volume	= 188,179 cuft
Drainage area	= 14.950 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 14.00 min
Total precip.	= 8.03 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

APPENDIX - D:

PROPOSED HYDROLOGIC ANALYSIS AND RUNOFF QUANTITY CALCULATIONS

Worksheet 2: Runoff Curve Number and Runoff

Project:	Moebus	By:	bh	Date	1/31/2021
Location:	Clinton	Checked:	Enter	Date	Enter
Circle One:	Present	<u>Developed</u>	PDA#2-To Stream		

1. Runoff Curve Number (CN)

Soil Name	Cover Description	CN*			Area	Product
and	(cover type, treatment, and	Table	Table	Table		of
hydrologic	hydrologic condition;	2-2	2-3	2-4	acres	CN X area
group	percent impervious;				sq. mi.	
	unconnected/connected impervious				x %	
(Appendix A)	area ratio					
В	Open Space	61			12.72	775.92
В	Wood - Grass Combination	55			1.01	55.55
С	Water	74			0.16	11.84
Any	Impervious Area	98			0.00	0.00
				Totals =	13.89	843.31

* Use only one CN per line.

CN (weighted) <u>total product =</u> total area

843.31	=
13.89	

60.713

Use CN = 61

2. Runoff

- Frequencyyr.
- Rainfall, P (24 hour).....in.
- Runoff, Qin. (Use P and CN with Table 2-1, fig. 2-1, or eqs. 2-3 and 2-4)

Storm #1	Storm #2	Storm #3

D-2

Copied from:

(210-VI-TR-55, Second Ed., June 1986)

worksheet 3. Time of Concentration (1 _c) of fraver time (1 _f)	Worksheet 3: Time	of Concentration	(T _c) or Trave	l Time (T _t)
---	-------------------	------------------	----------------------------	--------------------------

Project:	Moebus	Ву	:	bh	Date	1/31/2021	
Location:	Clinton	Ch	ecked:	Enter	Date	Enter	
Circle One: Circle One:	<u>Present</u> Tc	De Tt	eveloped throu	gh subarea	PDA#2-To	Stream	
NOTES:	Space for as many as two so worksheet Include a map, schematic, o	egments per f	flow type ca of flow segn	n be used for ea nents	ch		
Sheet flow (ap) 1. Surface designed 2. Manning's r 3. Flow length 4. Two-yr. 24- 5. Land Slope 6. Tt = 0.007 (r $P_2^{0.5} s^{0.4}$	<u>plicable to Tc only</u>) scription (table 3-1) roughness coeff., (table 3-1) n, L (total L<= 150 ft.) hr rainfall, P2 n <u>L)^{0.8}</u>	Compute T _t .	ft. ft. ft/ft hr.	Segment ID	Dense Gra 0.24 100 3.38 0.0533 0.16	Enter ss 0.00	0.16
Shallow Conce 7. Surface des 8. Flow length 9. Watercours 10. Average ve 11. $T_c = \underline{L}$ 3600V	entrated flow scription (paved or unpaved). , L se slope, s elocity, V (figure 3-1)	Compute T _t .	ft ft/ft ft/s hr	Segment ID	unpaved 600 0.063 4.0 0.04		0.04
Channel flow 12. Cross sect 13. Wetted per 14. Hydraulic r 15. Channel sl 16. Manning's 17. V = $\frac{1.49}{n}r^{2/3}$ n 18. Flow length 19. T _t = <u>L</u> 3600V 20. Watershed	ional flow area, a rimeter, p _w radius, r = a/p _w ope, s roughness coeff., n ³ s ^{1/2} h, L I or subarea T _c or T _t (add T _t in	Compute r Compute V Compute T _t steps 6, 11,	ft2 ft ft ft/ft ft/s ft ft. and 19)	Segment ID	Enter	Enter	0.00

Copied from:

(210-VI-TR-55, Second Ed., June 1986)

D-3

Worksheet 2: Runoff Curve Number and Runoff

Project:	Moebus	By:	bh	Date	1/31/2021
Location:	Clinton	Checked:	Enter	Date	Enter
Circle One:	Present	Developed	PDA#1-To Basin		

1. Runoff Curve Number (CN)

Soil Name	Cover Description	C	CN*			Product
and	(cover type, treatment, and	Table	Table	Table		of
hydrologic	hydrologic condition;	2-2	2-3	2-4	acres	CN X area
group	percent impervious;				sq. mi.	
	unconnected/connected impervious				x %	
(Appendix A)	area ratio					
В	Open Space	61			9.08	553.88
В	Wood - Grass Combination	55			1.59	87.45
С	Water	74			0.00	0.00
Any	Impervious Area	98			0.00	0.00
				Totals =	10.67	641.33

* Use only one CN per line.

CN (weighted) <u>total product =</u> total area <u>641.33</u> = 10.67

60.106

Use CN = 60

2. Runoff

- Frequencyyr.
- Rainfall, P (24 hour).....in.
- Runoff, Qin. (Use P and CN with Table 2-1, fig. 2-1, or eqs. 2-3 and 2-4)

Storm #1	1 :	Storm #2	Storm #3

D-2

Copied from:

(210-VI-TR-55, Second Ed., June 1986)

Project:	Moebus	By:		bh	Date	1/31/2021	
Location:	Clinton	Chec	ked:	Enter	Date	Enter	
Circle One: Circle One:	<u>Present</u> Tc	Deve Tt	oped through	n subarea	PDA#1-To	Basin	
NOTES:	Space for as many as two se worksheet Include a map, schematic, or	egments per flov description of f	v type can l low segme	be used for ea ents	ach		
<u>Sheet flow (ap</u> 1. Surface des 2. Manning's i 3. Flow length 4. Two-yr. 24- 5. Land Slope 6. Tt = $0.007(p_2^{0.5}s^{0.4})$	<u>plicable to Tc only)</u> scription (table 3-1) roughness coeff., (table 3-1) n, L (total L<= 150 ft.) hr rainfall, P2 e, s n <u>L)^{0.8}</u>	Compute T _t	ft. in ft/ft hr.	Segment ID	Dense Gra 0.24 100 3.3 0.032 0.19	Enter ss 0.00	0.19
Shallow Conce 7. Surface des 8. Flow length 9. Watercours 10. Average ve 11. $T_c = _L$ 3600V	entrated flow scription (paved or unpaved) n, L se slope, s elocity, V (figure 3-1)	Compute T _t	ft .ft/ft ft/s hr	Segment ID	unpaved 200 0.03 2.8 0.02		0.02
Channel flow 12. Cross sect 13. Wetted per 14. Hydraulic r 15. Channel sl 16. Manning's 17. $V = \frac{1.49}{n}r^{2/3}$	ional flow area, a rimeter, p _w radius, r = a/p _w ope, s roughness coeff., n ³ s ^{1/2}	Compute r Compute V	ft2 ft ft ft/ft .ft/s	Segment ID	Enter	Enter	
19. $T_t = _L_$ 3600V 20. Watershed	, , I or subarea T _c or T _t (add T _t in	Compute T _t steps 6, 11, and	n. ft. d 19)		0.00	0.00 Min=	0.00 0.21 12.84

Copied from:

(210-VI-TR-55, Second Ed., June 1986)

D-3

Worksheet 2: Runoff Curve Number and Runoff

Project:	Moebus	By:	bh	Date	1/31/2021
Location:	Clinton	Checked:	Enter	Date	Enter
Circle One:	Present	<u>Developed</u>	P	'DA#1-Imp⊺	Γo Basin

1. Runoff Curve Number (CN)

Soil Name	Cover Description	C	N*		Area	Product
and	(cover type, treatment, and	Table	Table	Table		of
hydrologic	hydrologic condition;	2-2	2-3	2-4	acres	CN X area
group	percent impervious;				sq. mi.	
	unconnected/connected impervious				x %	
(Appendix A)	area ratio					
В	Open Space	61				
В	Wood - Grass Combination	55				
С	Water	74				
Any	Impervious Area	98			8.8	863.38
				Totals =	8.8	863.38

* Use only one CN per line.

CN (weighted) total product = total area

863.38 = 8.81

98

Use CN =

98

2. Runoff

- Frequencyyr.
- Rainfall, P (24 hour).....in.
- Runoff, Qin. (Use P and CN with Table 2-1, fig. 2-1, or eqs. 2-3 and 2-4)

Storm #1	Storm #2	Storm #3

D-2

Copied from:

(210-VI-TR-55, Second Ed., June 1986)

Worksheet 2: Runoff Curve Number and Runoff

Project:	Moebus	By:	bh	Date	1/31/2021
Location:	Clinton	Checked:	Enter	Date	Enter
Circle One:	Present	Developed	т	o Trench D	rain

1. Runoff Curve Number (CN)

Soil Name	Cover Description	C	N*		Area	Product
and	(cover type, treatment, and	Table	Table	Table		of
hydrologic	hydrologic condition;	2-2	2-3	2-4	acres	CN X area
group	percent impervious;				sq. mi.	
	unconnected/connected impervious				x %	
(Appendix A)	area ratio					
В	Open Space	61			0.02	1.22
В	Wood - Grass Combination	55			0.00	0.00
С	Water	74			0.00	0.00
Any	Impervious Area	98			0.30	29.40
				Totals =	0.32	30.62

* Use only one CN per line.

CN (weighted) <u>total product =</u> total area <u>30.62</u> = 0.32

=

Use CN =

96

2. Runoff

- Frequencyyr.
- Rainfall, P (24 hour).....in.
- Runoff, Qin. (Use P and CN with Table 2-1, fig. 2-1, or eqs. 2-3 and 2-4)

Storm #1	Storm #2	Storm #3

95.688

D-2

Copied from:

(210-VI-TR-55, Second Ed., June 1986)

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Hyd. No. 3

Post-Dev Imp To Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 27.25 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 3 min	Hyd. volume	= 94,348 cuft
Drainage area	= 8.810 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.38 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 4

Post-Dev Perv. To Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 3.498 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.20 hrs
Time interval	= 3 min	Hyd. volume	= 18,616 cuft
Drainage area	= 10.670 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 12.80 min
Total precip.	= 3.38 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 5

Post-Dev To Stream

Hydrograph type	= SCS Runoff	Peak discharge	= 5.268 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.20 hrs
Time interval	= 3 min	Hyd. volume	= 26,202 cuft
Drainage area	= 13.890 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 11.90 min
Total precip.	= 3.38 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 6

Post-Dev To Trench Drain

Hydrograph type	= SCS Runoff	Peak discharge	= 0.959 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 3 min	Hyd. volume	= 3,187 cuft
Drainage area	= 0.320 ac	Curve number	= 96
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.38 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 7

Post-Dev Total To Basin

Hydrograph type	= Combine	Peak discharge	= 29.35 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.15 hrs
Time interval	= 3 min	Hyd. volume	= 112,963 cuft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 19.480 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Hyd. No. 8

Basin Routing

Hydrograph type	= Reservoir	Peak discharge	= 4.543 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.80 hrs
Time interval	= 3 min	Hyd. volume	= 83,557 cuft
Inflow hyd. No.	= 7 - Post-Dev Total To Basin	Max. Elevation	= 226.90 ft
Reservoir name	 Infiltration Basin 	Max. Storage	= 63,052 cuft

Storage Indication method used.

Sunday, Jan 31, 2021

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Hyd. No. 9

Post-Dev Total to Stream

Hydrograph type	= Combine	Peak discharge	=	9.215 cfs
Storm frequency	= 2 yrs	Time to peak	=	12.25 hrs
Time interval	= 3 min	Hyd. volume	=	112,946 cuft
Inflow hyds.	= 5, 6, 8	Contrib. drain. area	=	14.210 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 3

Post-Dev Imp To Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 40.57 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 3 min	Hyd. volume	= 142,807 cuft
Drainage area	= 8.810 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.00 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 4

Post-Dev Perv. To Basin

;
uft
า
้มf า

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 5

Post-Dev To Stream

= SCS Runoff	Peak discharge	= 18.03 cfs
= 10 yrs	Time to peak	= 12.20 hrs
= 3 min	Hyd. volume	= 69,031 cuft
= 13.890 ac	Curve number	= 61
= 0.0 %	Hydraulic length	= 0 ft
= USER	Time of conc. (Tc)	= 11.90 min
= 5.00 in	Distribution	= Custom
= NOAA_C_3 min.cds	Shape factor	= 484
	 = SCS Runoff = 10 yrs = 3 min = 13.890 ac = 0.0 % = USER = 5.00 in = NOAA_C_3 min.cds 	= SCS RunoffPeak discharge= 10 yrsTime to peak= 3 minHyd. volume= 13.890 acCurve number= 0.0 %Hydraulic length= USERTime of conc. (Tc)= 5.00 inDistribution= NOAA_C_3 min.cdsShape factor

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 6

Post-Dev To Trench Drain

SCS Runoff	Peak discharge =	= 1.450 cfs
10 yrs	Time to peak =	= 12.10 hrs
3 min	Hyd. volume =	= 4,936 cuft
0.320 ac	Curve number =	= 96
0.0 %	Hydraulic length :	= 0 ft
USER	Time of conc. (Tc)	= 6.00 min
5.00 in	Distribution	= Custom
NOAA_C_3 min.cds	Shape factor =	= 484
	SCS Runoff 10 yrs 3 min 0.320 ac 0.0 % USER 5.00 in NOAA_C_3 min.cds	SCS RunoffPeak discharge10 yrsTime to peak3 minHyd. volume0.320 acCurve number0.0 %Hydraulic lengthUSERTime of conc. (Tc)5.00 inDistributionNOAA_C_3 min.cdsShape factor

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Hyd. No. 7

Post-Dev Total To Basin

Hydrograph type	= Combine	Peak discharge	= 51.42 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.15 hrs
Time interval	= 3 min	Hyd. volume	= 193,200 cuft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 19.480 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Hyd. No. 8

Basin Routing

Hydrograph type	= Reservoir	Peak discharge	= 16.24 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.40 hrs
Time interval	= 3 min	Hyd. volume	= 163,780 cuft
Inflow hyd. No.	= 7 - Post-Dev Total To Basin	Max. Elevation	= 228.01 ft
Reservoir name	 Infiltration Basin 	Max. Storage	= 91,044 cuft

Storage Indication method used.

Sunday, Jan 31, 2021

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Hyd. No. 9

Post-Dev Total to Stream

Hydrograph type	= Combine	Peak discharge	= 30.65 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.25 hrs
Time interval	= 3 min	Hyd. volume	= 237,746 cuft
Inflow hyds.	= 5, 6, 8	Contrib. drain. area	= 14.210 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 3

Post-Dev Imp To Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 49.51 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 3 min	Hyd. volume	= 175,445 cuft
Drainage area	= 8.810 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.09 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 4

Post-Dev Perv. To Basin

ft

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 5

Post-Dev To Stream

SCS Runoff	Peak discharge =	= 28.29 cfs
÷ 25 yrs	Time to peak =	= 12.20 hrs
3 min	Hyd. volume =	= 104,168 cuft
= 13.890 ac	Curve number =	= 61
÷ 0.0 %	Hydraulic length =	= 0 ft
USER	Time of conc. (Tc)	= 11.90 min
6.09 in	Distribution	= Custom
NOAA_C_3 min.cds	Shape factor =	= 484
	SCS Runoff 25 yrs 3 min 13.890 ac 0.0 % USER 6.09 in NOAA_C_3 min.cds	SCS RunoffPeak discharge25 yrsTime to peak3 minHyd. volume13.890 acCurve number0.0 %Hydraulic lengthUSERTime of conc. (Tc)6.09 inDistributionNOAA_C_3 min.cdsShape factor

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 6

Post-Dev To Trench Drain

Hydrograph type	= SCS Runoff	Peak discharge	= 1.778 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 3 min	Hyd. volume	= 6,117 cuft
Drainage area	= 0.320 ac	Curve number	= 96
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.09 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Hyd. No. 7

Post-Dev Total To Basin

Hydrograph type	= Combine	Peak discharge	= 67.62 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.15 hrs
Time interval	= 3 min	Hyd. volume	= 252,160 cuft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 19.480 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Hyd. No. 8

Basin Routing

Hydrograph type	= Reservoir	Peak discharge	= 27.12 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.35 hrs
Time interval	= 3 min	Hyd. volume	= 222,734 cuft
Inflow hyd. No.	= 7 - Post-Dev Total To Basin	Max. Elevation	= 228.55 ft
Reservoir name	 Infiltration Basin 	Max. Storage	= 107,792 cuft

Storage Indication method used.

Sunday, Jan 31, 2021

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Hyd. No. 9

Post-Dev Total to Stream

Hydrograph type	= Combine	Peak discharge	= 51.44 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.25 hrs
Time interval	= 3 min	Hyd. volume	= 333,018 cuft
Inflow hyds.	= 5, 6, 8	Contrib. drain. area	= 14.210 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 3

Post-Dev Imp To Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 65.39 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 3 min	Hyd. volume	= 233,561 cuft
Drainage area	= 8.810 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 8.03 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 4

Post-Dev Perv. To Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 36.04 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.20 hrs
Time interval	= 3 min	Hyd. volume	= 129,979 cuft
Drainage area	= 10.670 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 12.80 min
Total precip.	= 8.03 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 5

Post-Dev To Stream

Hydrograph type	= SCS Runoff	Peak discharge	= 48.56 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.20 hrs
Time interval	= 3 min	Hyd. volume	= 174,837 cuft
Drainage area	= 13.890 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 11.90 min
Total precip.	= 8.03 in	Distribution	= Custom
Storm duration	= NOAA_C_3 min.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 6

Post-Dev To Trench Drain

ak discharge =	2.359 cfs
ne to peak =	12.10 hrs
d. volume =	8,223 cuft
rve number =	96
draulic length =	0 ft
ne of conc. (Tc) =	6.00 min
tribution =	Custom
ape factor =	484
	ak discharge=ie to peak=ie to peak=i. volume=ve number=draulic length=ie of conc. (Tc)=tribution=ape factor=

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 7

Post-Dev Total To Basin

Hydrograph type	= Combine	Peak discharge	= 98.12 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.15 hrs
Time interval	= 3 min	Hyd. volume	= 363,541 cuft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 19.480 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Hyd. No. 8

Basin Routing

Hydrograph type	= Reservoir	Peak discharge	= 48.95 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.30 hrs
Time interval	= 3 min	Hyd. volume	= 334,107 cuft
Inflow hyd. No.	= 7 - Post-Dev Total To Basin	Max. Elevation	= 229.42 ft
Reservoir name	= Infiltration Basin	Max. Storage	= 134,858 cuft

Storage Indication method used.

Sunday, Jan 31, 2021

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Hyd. No. 9

Post-Dev Total to Stream

Hydrograph type = Combine	Peak discharge = 93.21 cfs
Storm frequency = 100 yrs	Time to peak = 12.20 hrs
Time interval = 3 min	Hyd. volume = $517,166$ cuft
Inflow hyds. = 5, 6, 8	Contrib. drain. area = 14.210 ac

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Pond No. 1 - Infiltration Basin

Pond Data

Contours - User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 224.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	224.00	17,618	0	0
2.00	226.00	22,690	40,197	40,197
4.00	228.00	28,130	50,718	90,915
6.00	230.00	33,838	61,874	152,789
8.00	232.00	39,884	73,632	226,421

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 14.00	41.00	0.00	0.00	Crest Len (ft)	= 50.00	0.00	0.00	0.00
Span (in)	= 14.00	41.00	0.00	0.00	Crest El. (ft)	= 229.50	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 2.60	3.33	3.33	3.33
Invert El. (ft)	= 225.55	226.90	0.00	0.00	Weir Type	= Broad			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Weir Structures

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	224.00	0.00	0.00			0.00						0.000
2.00	40,197	226.00	0.87 ic	0.00			0.00						0.870
4.00	90,915	228.00	7.03 ic	9.13 ic			0.00						16.16
6.00	152,789	230.00	10.12 ic	52.42 ic			45.96						108.50
8.00	226,421	232.00	12.47 ic	81.29 ic			513.87						607.63

APPENDIX - E:

STORM SEWER SIZING CALCULATIONS

Structure	Weighted	Drainage	Тс	Impervious	Pervious	
Number	"C"	Area		Area	Area	
		(ac.)		(ac.)	(ac.)	
Inlet#1	0.91	0.35	10.00	0.31	0.04	
Inlet#2	0.91	0.29	6.00	0.26	0.03	Runoff Co-efficient for impervious area= 0.99
Inlet#3	0.42	1.15	22.00	0.26	0.89	Runoff Co-efficient for pervious area= 0.25
Inlet#4	0.66	0.36	12.00	0.20	0.16	Adjustment Factor For Runoff Coefficient= 1
Inlet#5	0.71	0.08	10.00	0.05	0.03	
Inlet#6	0.70	1.09	15.00	0.67	0.42	
Inlet#7	0.93	0.38	6.00	0.35	0.03	
Inlet#8	0.84	0.15	6.00	0.12	0.03	
Inlet#9	0.63	0.51	6.00	0.26	0.25	
Inlet#10	0.95	0.18	6.00	0.17	0.01	
Inlet#11	0.89	0.23	9.00	0.20	0.03	
Inlet#12	0.50	0.03	6.00	0.01	0.02	
Inlet#13	0.87	0.06	6.00	0.05	0.01	
Inlet#14	0.88	0.07	6.00	0.06	0.01	
Inlet#15	0.61	0.49	10.00	0.24	0.25	
Inlet#16	0.86	0.17	10.00	0.14	0.03	
Inlet#17	0.28	4.15	22.00	0.16	3.99	
Inlet#18	0.35	0.60	14.00	0.08	0.52	
Inlet#19	0.94	0.47	10.00	0.44	0.03	
Inlet#20	0.95	0.18	6.00	0.17	0.01	
Inlet#21	0.62	0.74	12.00	0.37	0.37	
Inlet#22	0.91	0.28	6.00	0.25	0.03	
Inlet#23	0.52	1.03	14.00	0.37	0.66	
Inlet#24	0.99	0.04	6.00	0.04	0.00	
Inlet#25	0.56	0.94	15.00	0.39	0.55	
Inlet#26	0.79	0.59	11.00	0.43	0.16	
Inlet#27	0.99	0.11	6.00	0.11	0.00	
Inlet#28	0.81	0.21	6.00	0.16	0.05	
Inlet#29	0.99	0.15	6.00	0.15	0.00	
Inlet#30	0.99	0.08	6.00	0.08	0.00	
Inter#31	0.80	0.43	8.00	0.32	0.11	
Inter#32	0.48	0.48	13.00	0.15	0.33	
Inlet#33	0.99	0.01	9.00	0.01	0.00	
Inlet#34	0.76	0.35	0.00 6.00	0.24	0.11	
Inlet#35	0.94	0.82	0.00	0.77	0.05	
Booin	0.03	0.71	0.00	0.56	0.13	
Dasin	0.34	1.52	10.00	0.19	1.33	
Total=		19.48		8.81	10.67	
Inlet #37	0.83	0.14	6.00	0.11	0.03	
Trench Dra	0.94	0.32	6.00	0.30	0.02	

Storm Sewer Tabulation

Sta	tion	Len	Drng	Area	Rnoff	Are	a x C	т	C	Rain	Total	Сар	Vel	Pi	ipe	Invert	t Elev	HGL	Elev	Grnd / R	im Elev	Line ID
Line	To		Incr	Total	coen	Incr	Total	Inlet	Syst		now	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Lille	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	52.790	0.28	15.16	0.91	0.25	8.77	6.0	29.4	3.7	32.69	65.58	7.44	30	2.56	224.00	225.35	226.40	227.26	0.00	238.89	22-HW1
2	1	272.307	0.18	6.45	0.95	0.17	2.77	6.0	27.1	3.9	10.77	12.06	7.27	18	1.32	232.06	235.65	233.17	236.90	238.89	248.72	20-22
3	2	249.361	0.47	5.22	0.94	0.44	1.81	10.0	25.1	4.1	7.37	8.67	5.16	18	0.68	235.65	237.35	236.90	238.39	248.72	246.92	19-20
4	3	116.908	0.60	4.75	0.35	0.21	1.37	14.0	24.1	4.1	5.69	7.52	4.61	18	0.51	237.35	237.95	238.39	238.90	246.92	249.00	18-19
5	4	250.753	4.15	4.15	0.28	1.16	1.16	22.0	22.0	4.3	5.05	6.63	3.50	18	0.40	237.95	238.95	239.34	239.95	249.00	242.90	17-18
6	2	31.422	0.17	1.05	0.88	0.15	0.78	10.0	10.3	6.3	4.91	11.52	6.60	15	3.18	245.35	246.35	245.92	247.49	248.72	249.73	16-20
7	6	166.659	0.07	0.39	0.88	0.06	0.33	6.0	7.9	7.0	2.34	14.15	2.91	15	4.80	246.35	254.35	247.90	254.96	249.73	259.28	14-16
8	7	118.432	0.06	0.32	0.87	0.05	0.27	6.0	6.9	7.4	2.01	15.22	6.16	15	5.56	255.85	262.43	256.16	263.00	259.28	266.04	13-14
9	8	83.964	0.03	0.26	0.50	0.02	0.22	6.0	6.2	7.7	1.70	12.08	5.20	15	3.50	262.68	265.62	263.00	266.14	266.04	269.14	12-13
10	9	25.000	0.23	0.23	0.89	0.20	0.20	6.0	6.0	7.8	1.60	4.66	3.36	15	0.52	265.62	265.75	266.14	266.26	269.14	269.14	11-12
11	1	24.996	0.74	0.74	0.62	0.46	0.46	12.0	12.0	5.9	2.69	9.13	5.13	15	2.00	235.25	235.75	235.71	236.45	238.89	238.89	21-22
12	1	139.650	0.18	7.69	0.95	0.17	5.28	6.0	25.2	4.0	21.40	35.16	8.20	27	1.29	234.60	236.40	235.87	237.99	238.89	241.89	10-22
13	12	52.410	0.51	7.51	0.84	0.43	5.11	6.0	24.8	4.1	20.90	28.80	8.51	24	1.62	236.65	237.50	237.99	239.12	241.89	241.12	9-10
14	13	103.736	0.15	5.86	0.90	0.14	3.71	6.0	23.9	4.2	15.46	24.18	9.04	18	5.30	237.75	243.25	239.12	244.67	241.12	247.88	8-9
15	14	131.355	0.08	4.24	0.71	0.06	2.46	10.0	22.8	4.3	10.50	16.26	8.26	18	2.40	244.80	247.95	245.68	249.19	247.88	255.58	5-8
16	15	97.459	1.15	3.80	0.42	0.48	2.17	22.0	22.0	4.3	9.42	17.15	8.15	18	2.67	252.25	254.85	253.04	256.02	255.58	261.23	3-5
17	16	43.468	0.29	0.64	0.91	0.26	0.58	6.0	10.2	6.3	3.66	12.19	6.67	15	3.57	258.20	259.75	258.67	260.52	261.23	263.66	2-3
18	17	28.449	0.35	0.35	0.91	0.32	0.32	10.0	10.0	6.4	2.02	13.26	3.14	15	4.22	259.75	260.95	260.52	261.52	263.66	264.58	1-2
19	14	30.018	0.38	1.47	0.93	0.35	1.12	6.0	15.4	5.2	5.81	9.13	6.49	15	2.00	244.75	245.35	245.47	246.44	247.88	248.43	7-8
20	19	43.426	1.09	1.09	0.70	0.76	0.76	15.0	15.0	5.3	4.02	12.59	4.05	15	3.80	245.35	247.00	247.04	247.80	248.43	250.00	6-7
21	15	172.966	0.36	0.36	0.66	0.24	0.24	12.0	12.0	5.9	1.39	4.53	3.25	15	0.49	249.30	250.15	249.78	250.63	255.58	253.00	4-5
22	6	32.906	0.49	0.49	0.61	0.30	0.30	10.0	10.0	6.4	1.90	9.08	1.77	15	1.98	246.35	247.00	247.90	247.91	249.73	250.42	15-16
23	16	26.000	0.94	2.01	0.56	0.53	1.10	15.0	15.3	5.2	5.74	10.75	6.79	15	2.77	255.99	256.71	256.64	257.96	261.23	261.45	25-3
32606								Number	r of lines: 4	2		Run Da	te: 02-03-	2021								

NOTES: Intensity = 31.22 / (Inlet time + 3.80) ^ 0.61; Return period = 25 Yrs. ; c = cir e = ellip b = box

Storm Sewer Tabulation

Sta	tion	Len	Drng	Area	Rnoff	Are	a x C	т	•	Rain	Total	Сар	Vel	P	ipe	Invert	Elev	HGL	Elev	Grnd / R	im Elev	Line ID
Line	To		Incr	Total	COEII	Incr	Total	Inlet	Syst		now	Tun		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Lille	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
24	23	109.000	0.04	1.07	0.99	0.04	0.58	6.0	14.4	5.4	3.09	6.63	3.43	15	1.06	256.71	257.86	258.13	258.56	261.45	263.70	24-25
25	24	52.000	1.03	1.03	0.52	0.54	0.54	14.0	14.0	5.4	2.92	8.82	4.17	15	1.87	257.86	258.83	258.56	259.51	263.70	262.20	23-24
26	13	24.962	0.08	1.14	0.99	0.08	0.97	6.0	12.7	5.7	5.54	13.86	5.83	15	4.61	238.25	239.40	239.12	240.34	241.12	252.00	30-9
27	26	135.366	0.11	0.70	0.99	0.11	0.58	6.0	11.6	5.9	3.42	8.18	5.44	15	1.60	245.55	247.72	246.11	248.46	252.00	250.97	27-30
28	27	72.378	0.59	0.59	0.79	0.47	0.47	11.0	11.0	6.1	2.84	9.39	3.98	15	2.11	247.72	249.25	248.46	249.92	250.97	252.50	26-27
29	26	31.634	0.15	0.36	0.99	0.15	0.32	6.0	7.1	7.3	2.33	7.26	4.57	15	1.26	246.45	246.85	246.94	247.46	252.00	251.78	29-30
30	29	136.626	0.21	0.21	0.81	0.17	0.17	6.0	6.0	7.8	1.33	8.36	2.36	15	1.68	246.85	249.14	247.70	249.60	251.78	252.39	28-29
31	End	25.016	0.71	2.80	0.85	0.60	2.22	8.0	17.5	4.9	10.87	13.23	8.91	15	4.20	224.00	225.05	225.26	226.25	228.00	233.00	36-HW2
32	31	193.654	0.82	2.09	0.94	0.77	1.62	6.0	15.9	5.1	8.31	9.30	6.98	15	2.08	225.05	229.07	226.25	230.20	233.00	232.62	35-36
33	32	125.512	0.35	1.27	0.76	0.27	0.85	9.0	14.8	5.3	4.50	7.65	4.46	15	1.40	229.07	230.83	230.20	231.68	232.62	235.28	34-35
34	33	139.128	0.01	0.92	0.99	0.01	0.58	6.0	13.7	5.5	3.22	6.64	4.02	15	1.06	230.83	232.30	231.68	233.02	235.28	238.85	33-34
35	34	115.412	0.43	0.43	0.80	0.34	0.34	8.0	8.0	7.0	2.40	5.34	3.62	15	0.68	232.30	233.09	233.02	233.71	238.85	236.34	31-33
36	34	80.037	0.48	0.48	0.48	0.23	0.23	13.0	13.0	5.6	1.30	14.16	5.20	15	4.81	235.60	239.45	235.86	239.91	238.85	242.70	32-33
37	End	149.826	0.14	0.14	0.83	0.12	0.12	6.0	6.0	7.8	0.91	12.90	2.87	15	3.99	244.33	250.31	244.71	250.69	249.33	254.31	37-ex
38	End	163.360	0.00	0.32	0.00	0.00	0.30	0.0	12.1	5.8	55.75	91.72	11.48	30	5.00	191.02	199.19	196.30	201.55	249.33	213.09	38-hw3
39	38	155.788	0.00	0.32	0.00	0.00	0.30	0.0	10.8	6.1	55.85	91.71	15.48	30	5.00	208.59	216.38	210.00	219.29	213.09	232.00	fil2-38
40	39	26.452	0.00	0.32	0.00	0.00	0.30	0.0	10.6	6.2	55.86	91.62	11.51	30	4.99	216.38	217.70	219.59	220.06	232.00	232.00	out-fil2
41	40	214.910	0.00	0.32	0.00	0.00	0.30	0.0	8.8	6.7	2.02	12.15	5.52	15	3.54	220.45	228.06	220.79	228.63	232.00	236.68	39-out
42	41	336.115	0.32	0.32	0.94	0.30	0.30	6.0	6.0	7.8	2.35	14.44	4.13	15	5.00	228.06	244.87	228.63	245.48	236.68	255.40	fil1-39
32606 Number of lines: 42 Pur Dete: 0											to: 02.02	2021										
3260	Number of lines. 42 Run Date. 02-03-2021																					
NOT	ES: Inte	ensity = 3	31.22 / (Inlet time	e + 3.80)	^ 0.61;	Return p	eriod =	25 Yrs.	; c=c	cire=el	lip b = b	OX									

APPENDIX - F:

QUALITY STORM HYDROLOGIC ANALYSIS AND RUNOFF QUANTITY CALCULATIONS

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 1

Post-Dev Imp To Basin-WQ

Hydrograph type	= SCS Runoff	Peak discharge	= 24.85 cfs
Storm frequency	= 1 yrs	Time to peak	= 1.07 hrs
Time interval	= 2 min	Hyd. volume	= 31,018 cuft
Drainage area	= 8.810 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= NJ-WQ.cds	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 2

Post-Dev Per To Basin

= SCS Runoff	Peak discharge	= 0.000 cfs
= 1 yrs	Time to peak	= n/a
= 2 min	Hyd. volume	= 0 cuft
= 10.670 ac	Curve number	= 60
= 0.0 %	Hydraulic length	= 0 ft
= USER	Time of conc. (Tc)	= 12.80 min
= 1.25 in	Distribution	= Custom
= NJ-WQ.cds	Shape factor	= 484
	= SCS Runoff = 1 yrs = 2 min = 10.670 ac = 0.0 % = USER = 1.25 in = NJ-WQ.cds	= SCS RunoffPeak discharge= 1 yrsTime to peak= 2 minHyd. volume= 10.670 acCurve number= 0.0 %Hydraulic length= USERTime of conc. (Tc)= 1.25 inDistribution= NJ-WQ.cdsShape factor

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Sunday, Jan 31, 2021

Hyd. No. 3

Post-Dev Total To Basin-WQ

Hydrograph type	= Combine	Peak discharge	= 24.85 cfs
Storm frequency	= 1 yrs	Time to peak	= 1.07 hrs
Time interval	= 2 min	Hyd. volume	= 31,018 cuft
Inflow hyds.	= 1,2	Contrib. drain. area	= 19.480 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Hyd. No. 4

Basin Routing

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 1 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 3 - Post-Dev Total To Basin-WQ	Max. Elevation	= 225.54 ft
Reservoir name	= Infiltration Basin	Max. Storage	= 31,018 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2009 by Autodesk, Inc. v6.066

Pond No. 1 - Infiltration Basin

Pond Data

Contours - User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 224.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	224.00	17,618	0	0
2.00	226.00	22,690	40,197	40,197
4.00	228.00	28,130	50,718	90,915
6.00	230.00	33,838	61,874	152,789
8.00	232.00	39,884	73,632	226,421

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 14.00	41.00	0.00	0.00	Crest Len (ft)	= 50.00	0.00	0.00	0.00
Span (in)	= 14.00	41.00	0.00	0.00	Crest El. (ft)	= 229.50	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 2.60	3.33	3.33	3.33
Invert El. (ft)	= 225.80	226.90	0.00	0.00	Weir Type	= Broad			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Weir Structures

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	224.00	0.00	0.00			0.00						0.000
2.00	40,197	226.00	0.19 ic	0.00			0.00						0.186
4.00	90,915	228.00	6.54 ic	9.13 ic			0.00						15.67
6.00	152,789	230.00	9.79 ic	52.42 ic			45.96						108.17
8.00	226,421	232.00	12.20 ic	81.29 ic			513.87						607.36

WATER QUALITY ANALYSIS

DRAIN TIME CALCULATIONS :

POST DEVELOPMENT FLOW FOR WATER QUALITY STORM

	VOLUME (CU. FT.)	
Flow TO BASIN	31,018	
TOTAL VOLUME REQUIRING 80% TSS REMOVAL	31,018 (CU. FT.)	
(THE TSS REMOVAL CRITERIER IS SATISFIED BY PROVIDING A INFILTRATIO	N BASIN)	
PROP RECHARGE VOLUME (RETENTION VOLUME BELOW OUTLET)	31,153 (CU. FT.)	
RECHARGE ANALYSIS		
	2.7 (INI/HD)	
	2.7 (IIN/FIK)	
TACTOR OF SALETT (13) FOR FERMILABILITY 132		
PERMEABILITY (K) WITH FACTOR OF SAFETY	1.35 (IN/HR)	
DEPTH OF RECHARGE VOLUME	19.0 (INCHES)^^	
PROPOSED RECHARGE RATE	1.35 (IN/HR)	
PROPOSED TIME TO RECHARGE REQUIRED VOLUME	14.07 (HR)	< 72 HRS REQUIRED

APPENDIX - G:

GROUNDWATER RECHARGE ANALYSIS

New Jers Groundw	w Jersey Annual Groundwater Recharge Analys					GSR-32	2)		Project Name:	Moebus		
Recharge Spreadsh Version 2.0	ieet	Select Township \downarrow	Average Annual P (in)	Climatic Factor					Description:			
November 2	2003	HUNTERDON CO., CLINTON TOWN	46.8	1.54		_			Analysis Date: 11/05/19			
		Pre-Developed Condit	ions						Conditions			
Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)		Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)
1	23.24	Open space	Duffield	15.3	1,288,533		1	16.55	Open space	Duffield	15.3	917,608
2	2.46	Woods-grass combination	Duffield	15.7	140,005		2	2.14	Woods-grass combination	Duffield	15.7	121,793
3	3	Open space	Birdsboro	15.3	166,197		3	2.05	Open space	Birdsboro	15.3	113,568
4	0.2	Woods-grass combination	Birdsboro	15.8	11,455		4	0.2	Woods-grass combination	Birdsboro	15.8	11,455
5	2.94	Open space	Haledon	12.9	137,471		5	2.43	Open space	Haledon	12.9	113,624
6	0.44	Woods-grass combination	Haledon	13.9	22,225		6	0.44	Woods-grass combination	Haledon	13.9	22,225
7	0.16	Open space	Udorthents	0.0	-		7	0.16	Open space	0.0		
8	0.64	Impervious areas	Duffield	0.0	-		8	9.11	Impervious areas	Duffield	0.0	
9							9					
10							10					
11							11					
12							12					
13							13					
14	0						14	0				
15	0						15	0				
Total =	33.1			Total Annual Recharge (in)	Total Annual Recharge (cu-ft)		Total =	33.1			Total Annual Recharge (in)	Total Annual Recharge (cu.ft)
				14.7	1,765,885		Annual	Rechar	ge Requirements Calculat	ion ↓	10.8	1,300,273
Procedure	to fill the	Pre-Development and Post-Development Cond	ditions Tables			% of Pre-	Developed .	Annual Re	charge to Preserve =	100%	Total Impervious Area (sq.ft)	396,832
For each land	segment, firs	t enter the area, then select TR-55 Land Cover, then select S	of the table		Post-D	evelopm	ent Ann	ual Recharge Deficit=	465,612	(cubic feet)		
and proceed d	ownward. Do	n't leave blank rows (with A=0) in between your segment entri	ies. Rows with A=0 will	not be		Rech	arge Effic	iency Pa	rameters Calculations (ar	ea averages)		
displayed or us	ed in calcula	tions. For impervious areas outside of standard lots select "Ir	mpervious Areas" as th	ne Land Cover.		RWC=	5.35	(in)	DRWC=	5.35	(in)	
Soil type for im	pervious are	as are only required if an infiltration facility will be built within	these areas.			ERWC =	1.23	(in)	EDRWC=	1.23	(in)	

Project Name		Descriptio	on		Analysis	b Date	BMP or L	ID Type			
Moebus		0			11/05/19						
Recharge BMP Input Parameters				Root Zone Water cap	acity Calcu	lated Paran	ieters	Recharge Design Pau	rameters		
Parameter	Symbol	<u>Value</u>	<u>Unit</u>	Parameter	Symbol	<u>Value</u>	Unit	Parameter	Symbol	<u>Value</u>	Unit
BMP Area	ABMP	5507.0	sq.ft	Empty Portion of RWC under Post-D Natural Recharge	ERWC	1.42	in	Inches of Runoff to capture	Qdesign	0.26	in
BMP Effective Depth, this is the design variable	dBMP	18.0	in	ERWC Modified to consider dEXC	EDRWC	1.42	in	Inches of Rainfall to capture	Pdesign	0.35	in
Upper level of the BMP surface (negative if above ground)	dBMPu	-18.0	in	Empty Portion of RWC under Infilt. BMP	RERWC	1.11	in	Recharge Provided Avg. over Imp. Area		14.6	in
Depth of lower surface of BMP, must be>=dBMPu	dEXC	0.0	in					Runoff Captured Avg. over imp. Area		15.8	in
Post-development Land Segment Location of BMP, Input Zero if Location is distributed or undetermined	SegBMP	1	unitless								
				BMP Calculated Size	Parameter	'S		CALCULATION CI	HECK MES	SAGES	
				ABMP/Aimp	Aratio	0.01	unitless	Volume Balance->	OK		
		***		BMP Volume	VBMP	8,260	cu.ft	dBMP Check>	OK		
Parameters from Annua	I Recharge	e Worksheet		System Performance	Calculated	Parameters	1	dEXC Check>	OK		
(or desired recharge volume)	Vdef	465,612	cu.ft	Annual BMP Recharge Volume		465,612	cu.ft	BMP Location>	ок		
Post-D Impervious Area (or target Impervious Area)	Aimp	383,763	sq.ft	Avg BMP Recharge Efficiency		92.0%	Represents % Infiltration Recharged	OTHER NOTES			
Root Zone Water Capacity	RWC	6.18	in	%Rainfall became Runoff		78.1%	%	Pdesign is accurate only after	BMP dimension	s are updated t	to make re
RWC Modified to consider dEXC	DRWC	6.18	in	%Runoff Infiltrated		43.3%	%	of BMP infiltration prior to fillir	g and the area o	occupied by BM	IP are igno
Climatic Factor	C-factor	1.54	no units	%Runoff Recharged		38.5%	%	sensetive to dBMP, make sur	e dBMP selected	l is small enoug	gh for BMF
Average Annual P	Pavg	46.8	in	%Rainfall Recharged		30.1%	%	Segment Location of BMP if y	ou select "imper	vious areas" R\	WC will be
Recharge Requirement over Imp. Area	dr	14.1	in					the soil type and a shallow roo	ot zone for this L	and Cover allow	wing consi

How to solve for different recharge volumes: By default the spreadsheet assigns the values of total deficit recharge volume "Vdef" and total proposed impervious area "Aimp" from the "Annual Recharge" sheet to "Vdef" and "Aimp" on this page. This allows solution for a single BMP to handle the entire recharge requirement assuming the runoff from entire impervious area is available to the BMP.

To solve for a smaller BMP or a LID-IMP to recharge only part of the recharge requirement, set Vdef to your target value and Aimp to impervious area directly connected to your infiltration facility and then solve for ABMP or dBMP. To go back to the default configuration clik the "Default Vdef & Aimp" button.

APPENDIX - H:

SOIL EROSION MEASURES

Concept Engineering Consultants, P.A.

227 Route #33 East, Bldg #2, Unit #7 Manalapan, NJ 07726

Date:	9/25/2020		
Project:	Clinton		
Project No:	032606		

Calculated By: BH Checked By:

Conduit Outlet Protection Calculations

Scour Hole # 1

Design Parameters:	
Design Storm Flow for 25 Year, Q	35.00 cfs
Vertical Dimension of Outlet Pipe, Do	30 in
Horizontal Dimension of Outlet Pipe, W_o	30 in
Tailwater Depth, TW ¹	2.00 ft
Scour Hole Depth, y (1/2 D_o or D_o)	15 in
Annon Dimension Calculations:	
Minimum Bottom Width $W_{\ell} = 2W$	5 00 ft
Minimum Bottom Length. $L_{4} = 3D_{2}$	= 7.50 ft
Minimum Top Width (max side slope of 3:1). W_2 W_3 :	= 12.50 ft
Minimum Top Length (max side slope of 3:1), L_2 L_2	= 15.00 ft
Rip Rap Stone Size Calculations:	
Unit Dicharge, $q = Q/D_o = 14.00$ cfs per foot	
• Case I: $y = 1/2 D_o$	
Median Stone, $d_{50} = \frac{0.0125 \ q^{1.33}}{TW} = 2.51 \text{ in}$ Therefore, use $d50 =$	6 in
Apron Thickness, $TH = 2 \times d_{50}$ with filter fabric	: 12 in
• Case II: $y = D_o$	
Median Stone, $d_{50} = \frac{0.0082 \ q^{1.33}}{TW} =$	

Apron Thickness, $TH = 2 \times d_{50}$ with filter fabric

Notes:

- 1. The side slopes shall be 3:1 or flatter.
- 2. The bottom grade shall be 0.0% (level).
- 3. There shall be no overfall at the end of the apron or at the end of the culvert.
- 4. Fifty (50) percent by weight of the rip-rap mixture shall be smaller than the median size stone designated as d₅₀. The largest stone size in the mixture shall be 1.5 times the d₅₀ size. The rip-rap shall be reasonably well graded.
- 5. The thickness of the rip-rap apron may be two (2) times the median stone diameter provided that the apron is constructed on a bedding of four (4) inches of 3/4 inch clean stone on approved filter fabric material.
- 6. Rip-rap and filter fabric shall meet the standards of the governing Soil Conservation District as well as the requirements of the local municipality.
- 7. Where the scour hole is to be placed within an existing or proposed waterway:
 - a. The scour hole sidewalls should be eliminated to maintain a smooth hydraulic line along the waterway bottom to avoid inviting turbulent flow from a sudden depression in the waterway.
 - b. If the flow in the waterway is greater than the flow from the proposed outlet, the rip-rap used to construct the scour hole should be sized based on the greater flow value according to the standard rip-rap.

Footnote:

1. Tailwater depth shall be the 2 year storm if discharging into a detention basin. For areas where tailwater cannot be computed, use $TW = 0.2D_{o}$.

Concept Engineering Consultants, P.A.

227 Route #33 East, Bldg #2, Unit #7 Manalapan, NJ 07726

Date:	9/25/2020
Project:	Clinton
Project No:	032606

Calculated By: BH Checked By:

Conduit Outlet Protection Calculations

Scour Hole # 2

Design Parameters:	
Design Storm Flow for 25 Year, Q	11.00 cfs
Vertical Dimension of Outlet Pipe, D _o	15 in
Horizontal Dimension of Outlet Pipe, W_o	15 in
Tailwater Depth, TW ¹	2.00 ft
Scour Hole Depth, y (1/2 D_o or D_o)	8 in
Apron Dimension Calculations:	
Minimum Bottom Width, $W_1 = 2W_0$	= 2.50 ft
Minimum Bottom Length, $L_1 = 3D_0$ L_1	= 3.75 ft
Minimum Top Width (max side slope of 3:1), W_2 W_2	= 6.25 ft
Minimum Top Length (max side slope of 3:1), L ₂ L ₂	= 7.50 ft
Rip Rap Stone Size Calculations:	
Unit Dicharge, $q = Q/D_o = 8.80$ cfs per foot	
• Case I: $y = 1/2 D_o$	
Median Stone, $d_{50} = \frac{0.0125 \ g^{1.33}}{TW} = 1.35$ in Therefore, use d50 =	6 in
Apron Thickness, $TH = 2 \times d_{50}$ with filter fabric	12 in

• Case II: y = D_o

0.0082 q^{1.33} Median Stone, d_{50} =

ΤW

Apron Thickness, $TH = 2 \times d_{50}$ with filter fabric

Notes:

- 1. The side slopes shall be 3:1 or flatter.
- 2. The bottom grade shall be 0.0% (level).
- 3. There shall be no overfall at the end of the apron or at the end of the culvert.
- 4. Fifty (50) percent by weight of the rip-rap mixture shall be smaller than the median size stone designated as d₅₀. The largest stone size in the mixture shall be 1.5 times the d₅₀ size. The rip-rap shall be reasonably well graded.
- 5. The thickness of the rip-rap apron may be two (2) times the median stone diameter provided that the apron is constructed on a bedding of four (4) inches of 3/4 inch clean stone on approved filter fabric material.
- 6. Rip-rap and filter fabric shall meet the standards of the governing Soil Conservation District as well as the requirements of the local municipality.
- 7. Where the scour hole is to be placed within an existing or proposed waterway:
 - a. The scour hole sidewalls should be eliminated to maintain a smooth hydraulic line along the waterway bottom to avoid inviting turbulent flow from a sudden depression in the waterway.
 - b. If the flow in the waterway is greater than the flow from the proposed outlet, the rip-rap used to construct the scour hole should be sized based on the greater flow value according to the standard rip-rap.

Footnote:

1. Tailwater depth shall be the 2 year storm if discharging into a detention basin. For areas where tailwater cannot be computed, use $TW = 0.2D_{o}$.

Concept Engineering Consultants, P.A.

227 Route #33 East, Bldg #2, Unit #7 Manalapan, NJ 07726

Date:	8/10/2020
Project:	Clinton,nj
Project No:	032606

Calculated By: BH Checked By:

Conduit Outlet Protection Calculations

Scour Hole # 3

Design Parameters:		
Design Storm Flow for 25 Year, Q		28.50 cfs
Vertical Dimension of Outlet Pipe, D _o		30 in
Horizontal Dimension of Outlet Pipe, W_o		30 in
Tailwater Depth, TW ¹		1.00 ft
Scour Hole Depth, y (1/2 D_o or D_o)		15 in
Apron Dimension Calculations:		
Minimum Bottom Width, $W_1 = 2W_0$	/1 =	5.00 ft
Minimum Bottom Length, $L_1 = 3D_0$	- 1 =	7.50 ft
Minimum Top Width (max side slope of 3:1), W_2 W_2	$l_2 = -$	12.50 ft
Minimum Top Length (max side slope of 3:1), L ₂ L	. ₂ = '	15.00 ft
Rip Rap Stone Size Calculations:		
Unit Dicharge, $q = Q/D_o = 11.40$ cfs per foot		
• Case I: $y = 1/2 D_o$		
Median Stone, $d_{50} = \frac{0.0125 \ q^{1.33}}{TW} = 3.82 \text{ in}$ Therefore, use d5	50 =	6 in
Apron Thickness, $TH = 2 \times d_{50}$ with filter fabric	Ή=	12 in
• Case II: $y = D_{o}$		

0.0082 g Median Stone, d_{50} = ΤW

Apron Thickness, $TH = 2 \times d_{50}$ with filter fabric

Notes:

- 1. The side slopes shall be 3:1 or flatter.
- 2. The bottom grade shall be 0.0% (level).
- 3. There shall be no overfall at the end of the apron or at the end of the culvert.
- 4. Fifty (50) percent by weight of the rip-rap mixture shall be smaller than the median size stone designated as d₅₀. The largest stone size in the mixture shall be 1.5 times the d₅₀ size. The rip-rap shall be reasonably well graded.
- 5. The thickness of the rip-rap apron may be two (2) times the median stone diameter provided that the apron is constructed on a bedding of four (4) inches of 3/4 inch clean stone on approved filter fabric material.
- 6. Rip-rap and filter fabric shall meet the standards of the governing Soil Conservation District as well as the requirements of the local municipality.
- 7. Where the scour hole is to be placed within an existing or proposed waterway:
 - a. The scour hole sidewalls should be eliminated to maintain a smooth hydraulic line along the waterway bottom to avoid inviting turbulent flow from a sudden depression in the waterway.
 - b. If the flow in the waterway is greater than the flow from the proposed outlet, the rip-rap used to construct the scour hole should be sized based on the greater flow value according to the standard rip-rap.

Footnote:

1. Tailwater depth shall be the 2 year storm if discharging into a detention basin. For areas where tailwater cannot be computed, use $TW = 0.2D_{o}$.

Offsite Stability Compliance.

The flow chart Figure 21-1 is provided in this appendix. The Project discharges the runoff to Well Defined waterway. The project is designed to reduce the peak rate of flow from site for 2, 10 and 100 year storm as

required by NJDEP storm water standards.

Based on above, the project meets the offsite stability standards.

APPENDIX - I:

STORMWATER MANAGEMENT MAINTENANCE PLAN (ATTACHED SEPARATELY)

APPENDIX - J:

SOIL LOG

SOIL LOG

Projec	t Name:	Clinton M	oebus 34, LLC			Boring #:	SL-2
Client	Project #:					E&LP Project #:	8144
Locati	on:	Town of C	Clinton, Hunterd	don County		Total Depth:	
Date D	Drilled:	2/17/2020)			Static Groundwater Level:	
Drilling	g Contractor:					Ground Surface Elevation	Not Surveyed
Drilling	g Method:					Sampling Equipment:	
Drilling	a Equipment:					Casing Equipment:	
Drilling	n Angle:					Logged by:	MP
	g / ligio.					Logged by.	
<u> </u>			_				
ow eet)	o, II	(ii)	erva	き		lits	low eet)
e (F	9" C	ery	Inte	e II	Lithologic Description	mer	e (F
fac	≥ o	S	ble	amp	<u>Enriciogic Description</u>	l line line line line line line line lin	pth
Sur D	BI	Re	San	ŭ		0	S D
0.0							0.0
0.5					12" Topsoil:	No mottling or evidence of	0.5
-1.0					12 10,50%,	groundwater	1.0
-15							15
-20							2.0-
							2.0
2.5							2.5
3.0							3.0
3.5					Silly Clay: 10 VD 1/6: Subang Plastan Day Frickle	No mottling or evidence of	3.5
4.0					אווי טומא, ויט דא 4/ס; Subang Blocky; Dry; Friable Sample A @ 4'-5'	groundwater	4.0
4.5							4.5
5.0							5.0
- 5.5							5.5
-60							-00
							6.6
- 7.0					Silty Clay; 10 YR 6/6; 10% Gravel, 10% Cobble		0.5 7.0-
					Subang Blocky; Moist; Friable Sample B @ 7'-7 5'	No mottling or evidence of	7.0
7.5						groundwater	7.5
8.0							8.0
8.5						Many signs of mottling (20%<)	8.5
9.0					Silty Clay;10 YR 5/3; 10% Gravel, 10% Cobble		9.0
9.5					Subang Blocky; Moist; Friable	Distinct, Coarse (>15mm)	9.5
- 10.0					Sample C @ 9'-9.5"	Dopth to 05"	10.0
- 10.5						Deptil to 95	10.5
-11.0							11.0
- 44.5							11.0
							11.5
12.0							12.0
12.5							12.5
13.0							13.0
13.5							13.5
14.0							14.0
14.5							14.5
15.0							15.0
15.5							15.5
- 16 0							16.0
- 10.0							10.0
16.5							16.5
17.0							17.0
17.5							17.5
18.0							18.0
18.5							18.5
19.0							19.0
19.5							19.5
20.0							20.0
-20.5							20.0
- 20.5							20.5
21.0							21.0
21.5							21.5
22.0							22.0
22.5							22.5
23.0							23.0
23.5							23.5
24.0							24.0
-245							24.5
-24.0							24.5
25.0							25.0

SOIL LOG

Proje	ct Name:	Clinton M	oebus 34, LLC			Boring #:	SL-3
Clien	t Project #:					E&LP Project #:	8144
Loca	tion:	Town of C	Clinton, Hunterd	don County		Total Depth:	
Date	Drilled:	2/17/2020)	,		Static Groundwater Level:	
Drillir	g Contractor:					Ground Surface Elevation:	Not Surveyed
Drillin	g Method:					Sampling Equipment:	
Drillir	a Fauinment:					Casing Equipment:	
Drillir	ng Angle:					Logged by:	MP
	ig / ligio.					Logged by.	
			_	1			Ι
ov eet)	u ⊒	Ē	arva	*		<u>ته</u>	ow eet)
e Bel	9"-9"	210	Inte	le II	Lithologic Description	Juen	e (Fel
face	<u>-</u> 9-	COVE	ble	du		limo	face
Sur De	o B	Re	Sar	Š		0	Sur
0.0							0.0
-0.5							0.5
					15" Topsoil;	No mottling or evidence of	1.0-
-1.5						groundwater	1.5
							1.0
2.0							2.0
2.5		1					2.5
3.0		1					3.0
3.5		1					3.5
4.0		1			Silty Clay; 10 YR 4/6; Subang Blocky; Moist; Friable	No mottling or evidence of	4.0
4.5		1			Sample A @ 4'-5.5'	groundwater	4.5
5.0							5.0
5.5		1					5.5
- 6.0							6.0
- 6.5							6.5
						No mottling.	
					Silty Clay; 10 YR 6/6; Subang Blocky; Moist; Friable		7.0
7.5					Sample B @ 7-7.5	Evidence of seepage @ 127"	7.5
8.0							8.0
8.5							8.5
9.0							9.0
9.5							9.5
- 10.0							10.0
10.5							10.5
-11.0							11.0
-115							11.5
							11:3
- 12.0							12.0
12.5							12.5
13.0							13.0
13.5							13.5
14.0							14.0
14.5							14.5
15.0							15.0
15.5							15.5
16.0							16.0
16.5							16.5
-17.0							17.0
17.5							17.5
18.0							18.0
18.5							18.5
19.0							19.0
19.5							19.5
20.0							20.0
20.5							20.5
210							21 0
-215							21.0
							21.0
L ^{22.0}							22.0
22.5							22.5
23.0							23.0
23.5							23.5
24.0							24.0
24.5							24.5
25.0							25.0
							20.0

E	Ingine	ering & L	anning Asso	ciates	
Project: Location: Test By:	(Moebus Clinton Townsł Annika Asplur	nip Id	Date: Sample:	2/26/2020 IN PLACE SL-2 @ C (9'-9.5')
				Dist	urbed
L=	6.000	T1=	635	Tube Weight	700
H1=	7.500	T2=	1339	Gross Weight	1,558
H2=	6.000	T3=	1389	Net Weight	858
r=	1.125	T4=	1722		
R=	1.125	T5=	1761	Sample Vol. (in ³)	23.844375
		T(sec.)= T(min.)=	1761 29.35	(cm ³)	390.8093063
		()		Bulk Density	2.195444137
					min. 1.2 gr/cm ³
Soil Perm	eability:		<u>2.74</u>		
Soil Class	:		<u>K3</u>		
APPENDIX K:

GROUNDWATER MOUNDING ANALYSIS

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

APPENDIX - L:

PRE-DEVELOPMENT AND POST-DEVELOPMENT DRAINAGE AREA PLANS.

	-E: GNED: CKED:			2/3/202 DATE		JEST MAIN		IGHT 2019 D. THE COPY THE WRITTE ALLY FOR US RRSON OR FO RRSON OR FO	287.4 SCALE:	
12/03	8144 32606	PRE-	65 1/; BL TO	PROFES	2	STREET PH. 908-236 TE OF AUT		ENGINEEF CORREUSE OF FENGINEEF FENGINEERT FUSINEERT FUSINEERT FUSINEERT FUSINEERT FUSINEERT FUSINEERT FUSINEERT FUSINEERT FUSINEERT FUSINEERT FUSINE	287.4 × 287.3	
\$/2020	"=60' 3H RN DWG		2 CEN	SSIONAL .	EVISION	3-0544 HORIZATIC		NG & LAN F THIS DOCUN RG & LAND PLIN F ENGINEERIN NG & LAND PLIN FURPOSE OR FURPOSE OR		
		ARE	COM SION / ITER (14 LO PF CLI			FA) NAL ASSO NN NO.: 24	H K K	ID PLANNII HENT OR ANY ANNING ASSA ROJECT AT TI	$\dot{\bigcirc}$	
			MON AND S STREI T 32 NTON	P.E. NO		HI CIATION GA2802150		VG ASSOC PORTION THE NULL ASSOC DC., INC. AND HIS SITE. IT IS ITHOUT THE V		
				ND SUR	BY	3H BRIDG -9572 00 EXP. 8/3		REOF IS PRO C., INC. ALL HAS BEEN PR NOT TO BE L ONT TO BE L		
		\overline{O}	SEY	VEYOR 258200	DATE	E, NJ 08829		RIGHTS RIGHTS HIBITED DRANED SPARED SED BY ANY ISENT OF	<u>/</u> &	

E: NAME:	NO.: IGNED: CKED:			2/3/202 DATE			VEST MAIN F		NGHT 2019 D. THE COPY THE WRITTEN E PROPERTY FOR USE ERSON OR FOF ERSON OR FOF RING & LAND P	turner and the second		SCALE:		
32606.I 12/03/	8144/3 BI CF	POST-	R SUB 65 1/2 BL TO	PROFESS			STREET PH. 908-238-1 A PR TE OF AUTH		ENGINEERI OOR REUSE OF T OOR SENT OF E F ENGINEERING BY THE OWNEI R ANY OTHER PI LANNING ASSO	The formation of the second se	A company of the second	1"=10000		
2020	32606 =40' H	DEVE	CENT COUN		VISION		0544 OFESSIONA ORIZATION		HIS DOCUMEN ENGINEERING 8 & LAND PLANI 3 & LAND PLANI 3 & LAND PLANI 7 OF THIS PRO. JRPOSE OR LO C., INC.	CODEE COOL				
		AREA	ON AN ER ST CLINT	NGINEER N.J. P.E			FAX. 9(L ASSOCIA: NO.: 24GA2		PLANNING / T OR ANY PORT , LAND PLANNIN NING ASSOC., IT NING ASSOC., IT LECT AT THIS S CATION WITHO					
		VENT PLAN	ONS D SITE 'ON NEW J	WAYNE & LAND S	BY		HIGH BF)8-238-9572 TION 8021500 EX	d	ASSOC., INC TION THEREOF NC. AND HAS BE UT THE WRITTE UT THE WRITTE					
N	NG NO.:	~ '	E PLAN	J. INGRA	DA	++++	RIDGE, NJ (P. 8/31/202:		ALL RIGHTS IS PROHIBITED THIS DRAWIN EN REFAREI N CONSENT C		P ←			
				8)8829		O G IS				ANT	