CIVIL ENGINEERING ENVIRONMENTAL SURVEYING LANDSCAPE ARCHITECTURE GEOTECHNICAL

STORMWATER MANAGEMENT REPORT

Puleo International, Inc. Block 18, Lot 5 13 Moebus Place Town of Clinton, Hunterdon County, NJ

Prepared For: Puleo International, Inc. C/O Chris Puleo 3614 Kennedy Rd South Plainfield, NJ 07080

October 19, 2020 Revised January 5, 2021

Wayne J. Ingram, P.E. New Jersey Professional Engineer License No. 24GB04258200

E&LP

Headquarters 140 West Main Street | High Bridge, NJ 08829 T: 908.238.0544

Clinton | Asbury Park | Denville | Philadelphia

TABLE OF CONTENTS

List of Appendices	2
List of Figures	3
1. Project Description	. 4
1.1 Existing Conditions	. 4
1.2 Proposed Conditions	. 4
1.3 Soil Conditions	. 4
2. Methodology	5
2.1 Stormwater Runoff Calculation Methodology	5
2.2 Stormwater Runoff Quality	5
2.3 Groundwater Recharge	5
2.4 Non-Structural Stormwater Management Strategies	5
2.5 Stormwater Conveyance	6
3. Stormwater Analysis	7
3.1 Existing Conditions Stormwater Runoff Quantity	7
3.2 Proposed Conditions Stormwater Runoff Quantity	7
3.3 Stormwater Runoff Quality	
3.4 Groundwater Recharge	8
3.5 Soil Erosion and Sediment Control	
4. Conclusions	10

LIST OF APPENDICES

Appendix A: Site Figures

- Appendix B: New Jersey 24 Hour Rainfall Frequency Data & Rainfall Distribution Regions
- Appendix C: Pre and Post Development Drainage Area Maps
- Appendix D: Curve Number Worksheets

Appendix E: Time of Concentration Worksheets

- Appendix F: Water Quantity Hydrologic Analysis
- Appendix G: Water Quality Hydrologic Analysis & TSS Calculations
- Appendix H: Storm Conveyance Sizing Calculations
- Appendix I: Soil Erosion and Sediment Control Measures & Calculations
- Appendix J: Basin Draining Analysis & Calculations
- Appendix K: On Site Soil Testing
- Appendix L: Low Impact Development Checklist

LIST OF FIGURES

Figure 1: Aerial Map Figure 2: USGS Map Figure 3: Hydrologic Soil Group Map Figure 4: Land Use Map Figure 5: FEMA Map

1. PROJECT DESCRIPTION

1.1 Existing Conditions

The subject property, where the proposed stormwater management facilities will be located, is currently known as Block 18, Lot 5 on the Town of Clinton tax maps and is within the OB-4 Office Research District Zone. Access to the site is via an existing driveway opening along Route 31 North. The property is mostly a vacant lot, but contains a Town utility building in the northwest corner.

1.2 Proposed Conditions

The project consists of the construction of a warehouse structure with office area and associated parking and loading docks. Stormwater management improvements will be constructed to meet state and local ordinance requirements. General site improvements in accordance with all state and local ordinance ordinance requirements will be implemented in the construction of the proposed development.

In accordance with the requirements set by N.J.A.C. 7:8, the project is considered a "Major Development". The proposed disturbance exceeds 1 acre and the increase in impervious coverage is greater than 0.25 acre; therefore, the project is required to meet the stormwater management requirements for water quantity, water quality and groundwater recharge set by N.J.A.C 7:8.

1.3 Soil Conditions

Per the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Web Soil Survey, generally two soils are present on the site. The Southern portion of the site predominantly consists of Duffield Silt Loam (DufB, DugCg), which typically has depth to bedrock between 56-80 inches below the surface and a depth to the water table greater than 80 inches. Duffield Silt Loam is classified as hydrologic soil group (HSG) B. The Northern portion of the site contains Gladstone Gravelly Loam (GkaoC2). Gladstone Gravelly Loam typically has a depth to bedrock between 42 to 80 inches and groundwater greater than 80 inches and is classified as HSG B. A USDA NRCS Web Soil Survey map is included in Appendix A.

2. METHODOLOGY

2.1 Stormwater Runoff Calculation Methodology

The stormwater quantity runoff analysis has been performed utilizing the Soil Conservation Service (SCS) Technical Release 55 (TR-55) "Urban Hydrology for Small Watersheds," revised June 1986. The site runoff has been calculated for the 2-, 10-, and 100-year storm frequencies in accordance with NJDEP's storm water regulations for water quantity control (N.J.A.C. 7:8-5.4).

The analysis utilized the New Jersey 24-hour rainfall frequency data per NOAA precipitation frequency estimates with New Jersey region C rainfall distribution. The time of concentration (Tc) calculations were calculated based on the velocity method per Chapter 15 of the National Engineering Handbook. Several potential Tc flow paths were analyzed in order to determine the most appropriate flow path. CN values were calculated for each drainage area. The summary of results and supporting calculations for the existing and proposed stormwater quantity runoff analysis can be found in Appendices B-F of this report.

2.2 Stormwater Runoff Quality

The storm water runoff quality analysis has been performed in accordance with NJDEP's Storm Water Management Regulations (N.J.A.C. 7:8-5.5). This storm water management plan serves to reduce the post-construction load of Total Suspended Solids (TSS) generated from the water quality design storm by 80 percent, as an annual average. This reduction has been applied to all areas of new development on the site. The water quality design storm consists of 1.25 inches of rain falling in 2 hours with the NJDEP distribution as illustrated in N.J.A.C. 7:8-5.5 "Table 1 - Water Quality Design Storm Distribution".

2.3 Groundwater Recharge

A groundwater recharge analysis has been performed in accordance with NJDEP's Stormwater Management Rules (N.J.A.C. 7:8-5.4). The New Jersey Groundwater Recharge Spreadsheet (NJGRS) Version 2.0 (Updated November 2003) was utilized to determine the groundwater recharge associated with the site. Computations of the pre-development and post-development annual groundwater recharge rates and the annual recharge deficit was prepared based on the New Jersey Geological Survey Report GSR-32" A Method for Evaluating Ground-Water Recharge Areas in New Jersey", which is incorporated into the NJGSR spreadsheet (Refer to Appendix I of this report).

2.4 Non-Structural Stormwater Management Strategies

As per N.J.A.C. 7:8-5.3 requirements non-structural stormwater strategies have been incorporated into the design to the maximum extent practicable:

- 1. The proposed impervious surfaces are minimized on the project site and the runoff over the proposed impervious surfaces flow into the proposed stormwater management systems;
- 2. Natural drainage features and vegetation are maintained and maximized where possible;
- 3. Land disturbance is being minimized to the extent possible and there is minimal clearing required for the project;
- 4. Soil compaction will be minimized and any areas of over compaction will be mediated in accordance with the local soil conservation district standards;
- 5. Low maintenance trees and native grasses are proposed to encourage retention of all plantings in areas not proposed as maintained lawn;
- 6. The stormwater control system was designed to prevent trash and debris from exiting the stormwater management facility. This is accomplished through the use of inlet filters, trash racks, and grates. The stormwater system will be cleaned and trash/debris will be removed according the Stormwater Management Maintenance Plan, this will be performed by the Owner/Operator and all documents will be provided to the Township Stormwater Coordinator.

2.5 Stormwater Conveyance

The storm sewer hydraulics is based upon the Manning Equation as defined in the "Handbook of Hydraulics," by Brater and King, Sixth Edition. Storm sewer capacity is based on full depth gravity flow. The project is designed to convey water via closed pipe systems to the stormwater management system. Refer to Appendix J for calculations.

3. STORMWATER ANALYSIS

3.1 Existing Conditions Stormwater Runoff Quantity

The Pre-Development Drainage Area Map (Appendix C) illustrates the existing drainage area on site. The site has been analyzed as one drainage area.

EXDA-A is defined by the proposed limit of disturbance due to the proposed development. The drainage area is modeled with one distinct land cover as follows: 9.96 acres of woods. EXDA-A generally flows from the southern site boundary to the northern site boundary. No existing stormwater management system is present on-site.

The curve numbers (*CN*) and time of concentrations (T_c) for the existing drainage area have been calculated utilizing the TR-55 method and velocity method respectively for the existing drainage area. A runoff hydrograph has been calculated for the 2-, 10-, and 100-year storms. The peak runoff (Q cfs) has been obtained from the runoff hydrograph for the existing drainage area.

The pre-development runoff from the existing drainage area is listed in the following table:

Drainage Area	2-year Storm Peak Outflow	10-year Storm Peak Outflow	100-year Storm Peak Outflow	
	(cfs)	(cfs)	(cfs)	
EXDA-A	1.342	7.176	23.84	

Refer to Appendices D through F for a summary of the composite curve numbers (CN), pre-development peak discharge rates for the 2-, 10-, and 100-year storms, and the associated runoff hydrographs.

3.2 Proposed Conditions Stormwater Runoff Quantity

The Post-Development Drainage Area Map (Appendix C), illustrates the proposed drainage areas for the post-development condition.

To accommodate the proposed site development, the existing drainage area has been subdivided into two distinct proposed drainage areas, PRDA-A To Basin and PRDA-A Bypass.

PRDA-A To Basin is comprised of the all the new impervious cover and lawn area that is directed to the proposed bioretention basin. PRDA-A To Basin is modeled as 6.49 acres of impervious coverage and 3.16 acres of open space. PRDA-A To Basin discharges along the northern property line. Please note that the impervious area to the building has been designed to include additional impervious coverage for future building expansion of approximately 20,000 square feet.

PRDA-A Bypass is comprised of the new lawn area on the subject property that will bypass the proposed bioretention basin. PRDA-A Bypass is modeled as 0.31 acres of open space and 0.093 acres of open space. PRDA-A Bypass discharges along the northern site boundary.

To manage the stormwater runoff, a bioretention basin has been designed.

The performance of the stormwater management system, and the bypass area are summarized in the tables below:

Drainage Area	2-year Storm Peak Outflow (cfs)	10-year Storm Peak Outflow (cfs)	100-year Storm Peak Outflow (cfs)
PRDA-A (Impervious)	24.25	36.12	58.13
PRDA-A (Pervious)	3.692	8.602	19.15
PRDA-A To Basin	27.93	44.72	77.28
Basin Discharge	0.495	1.858	18.41
PRDA-A Bypass	0.362	0.844	1.879
Prop. Site Run-off	0.650	1.903	18.89

The proposed Stormwater Management Systems provide the necessary detention time and storage to achieve the reduction factors required by N.J.A.C.7:8. A summary table has been provided below documenting the overall performance of the system:

Runoff Comparison Table Comparing Existing Site Run-off to Proposed Site Run-off							
Ex. Site Run-off (cfs)Reduction RequiredTarget Runoff 							
2-year	1.342	50%	0.671	0.650			
10-year	7.176	75%	5.382	1.903			
100-year	23.84	80%	19.072	18.89			

3.3 Stormwater Runoff Quality

The proposed runoff quality has achieved the required TSS removal, in accordance with NJDEP standards. Quality treatment has been provided for the proposed development through the use of a Bioretention Basin designed in accordance with the NJDEP BMP Manual for a water quality storm TSS removal rate of 80%.

3.4 Groundwater Recharge

The existing site has an annual total of groundwater recharge of approximately 560,249 C.F. The proposed development creates an annual total groundwater recharge deficit of approximately 401,829 C.F. The proposed bioretention basin has been design to infiltrate the groundwater recharge deficit. An annual recharge volume of approximately 403,452 C.F. is observed in the post development conditions. The analysis has been performed based upon the approved NJDEP Recharge Spreadsheet and can be found in Appendix I. Bioretention basin has been designed to not infiltrate water into the subsurface.

3.5 Soil Erosion and Sediment Control

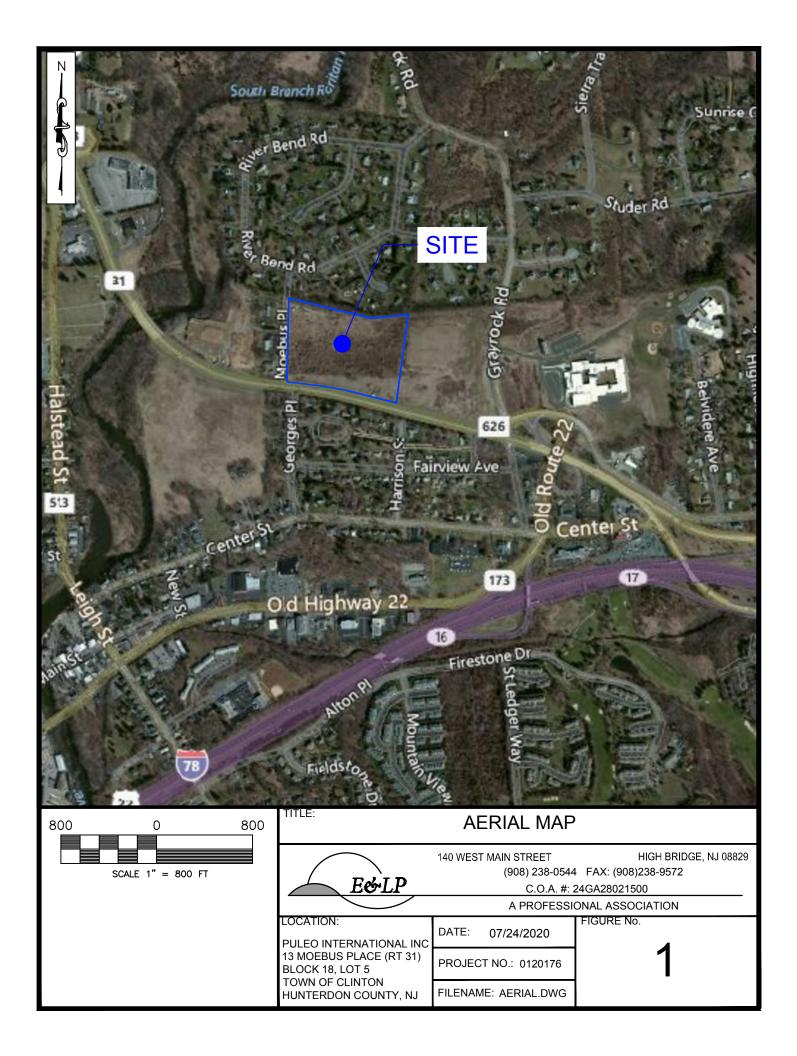
Soil Erosion and Sediment Control measures have been designed for the stormwater management system to ensure that water quality is maintained and

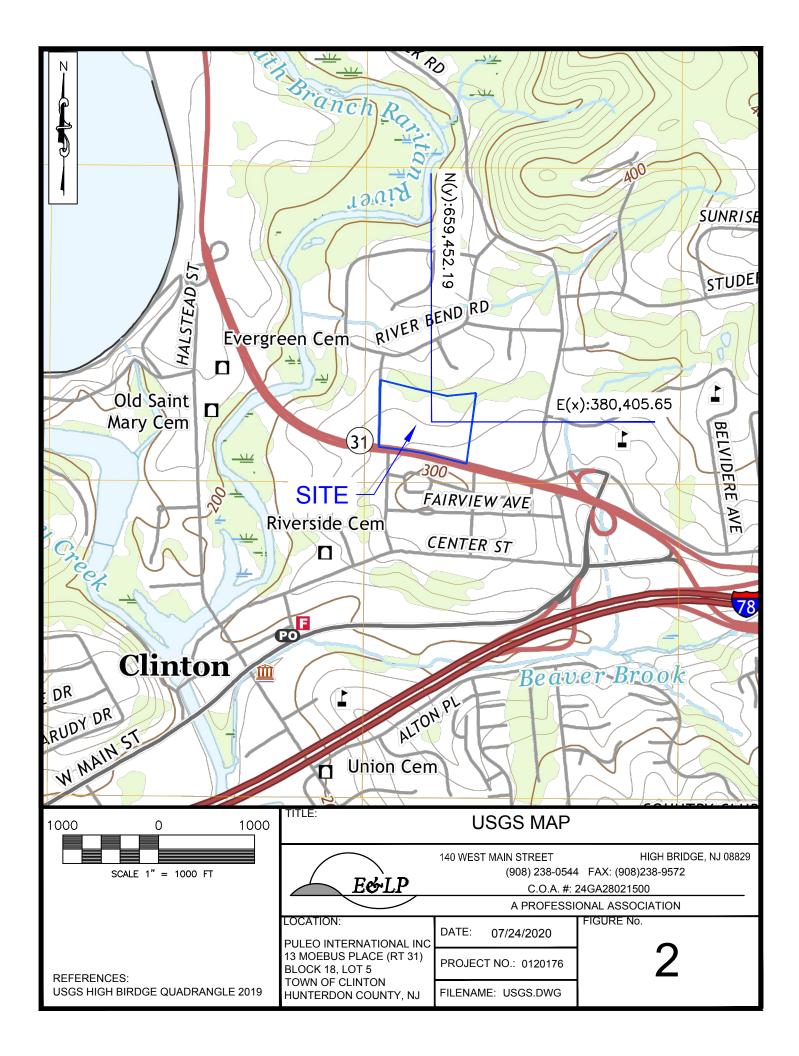
that the system can safely and adequately control runoff from the property. Design calculations for the conduit outlet protection can be found in Appendix K of this report.

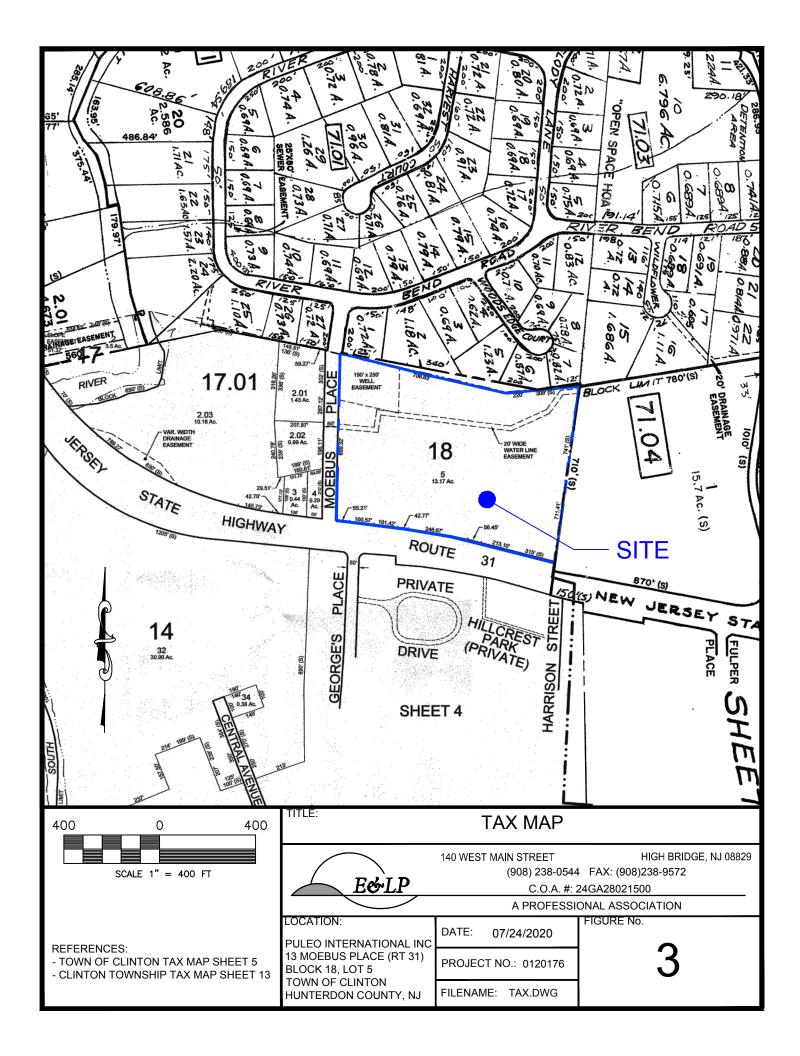
4. CONCLUSIONS

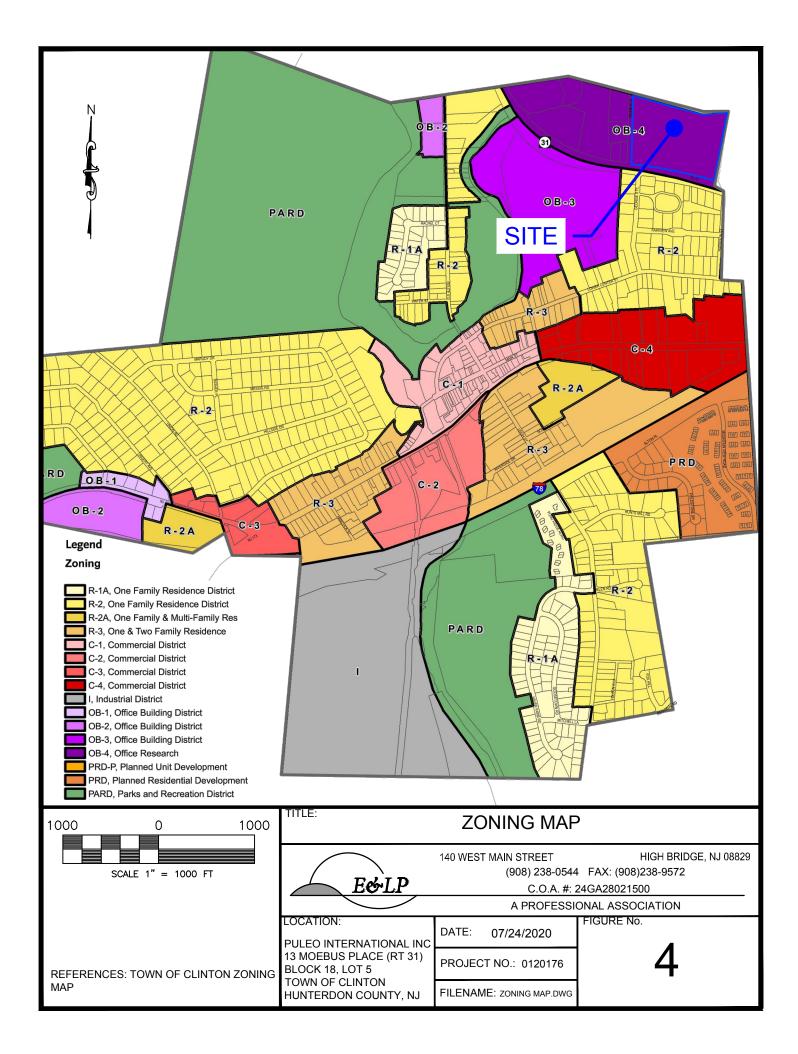
The proposed development will reduce peak flow from the site for the 2-, 10-, and 100-year storm events by factors greater than 50%, 75%, and 80%, respectively (NJDEP Standard) under the proposed conditions.

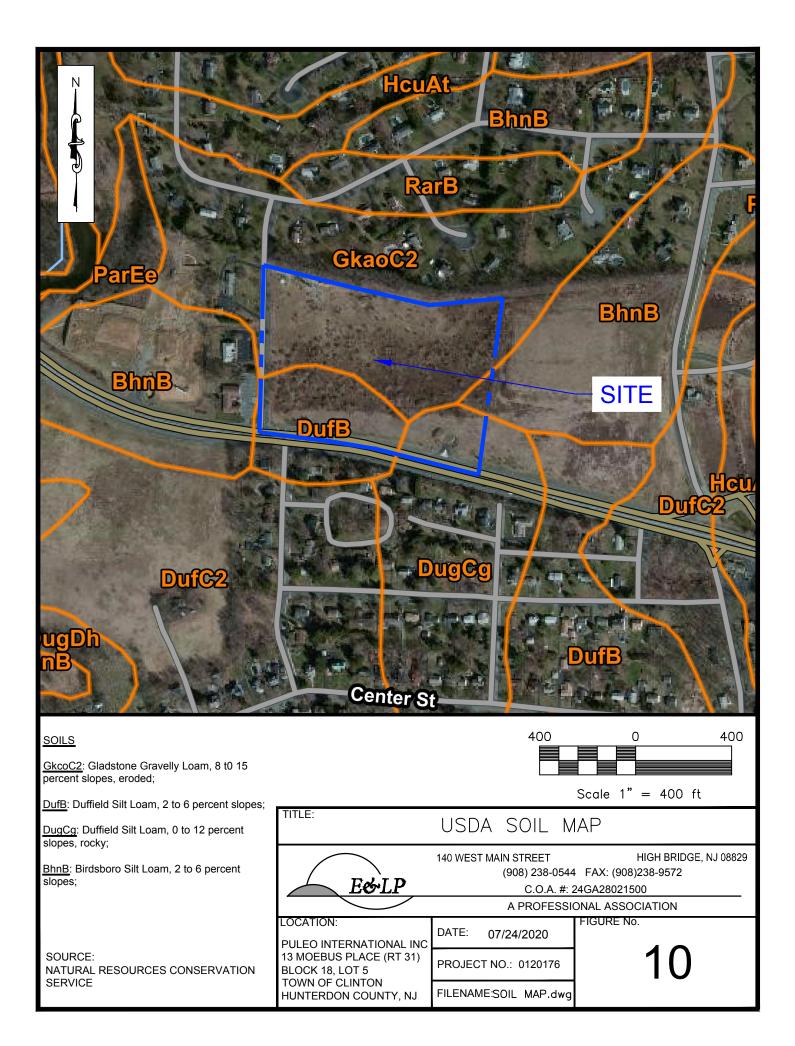
For the proposed condition, the peak runoff rates for the 2-, 10-, and 100-year storm events are reduced while existing drainage patterns are generally maintained.

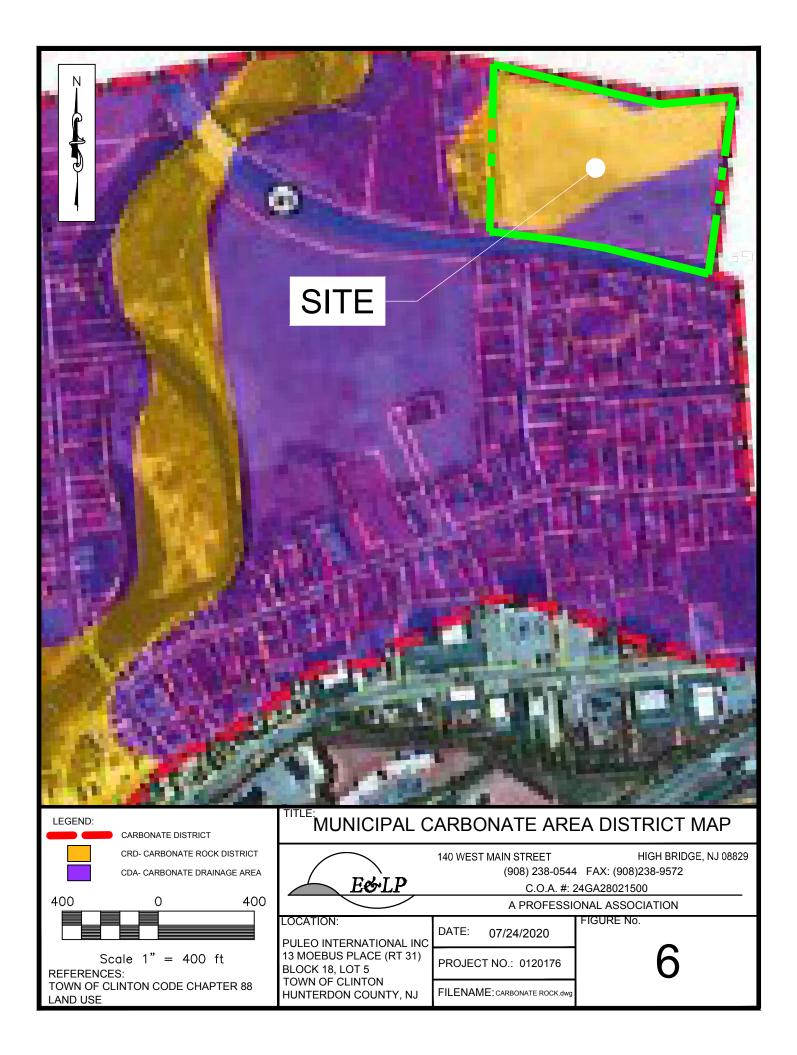

All on-site storm conveyance systems were designed to accommodate the proposed site improvements under the 25-year storm event.

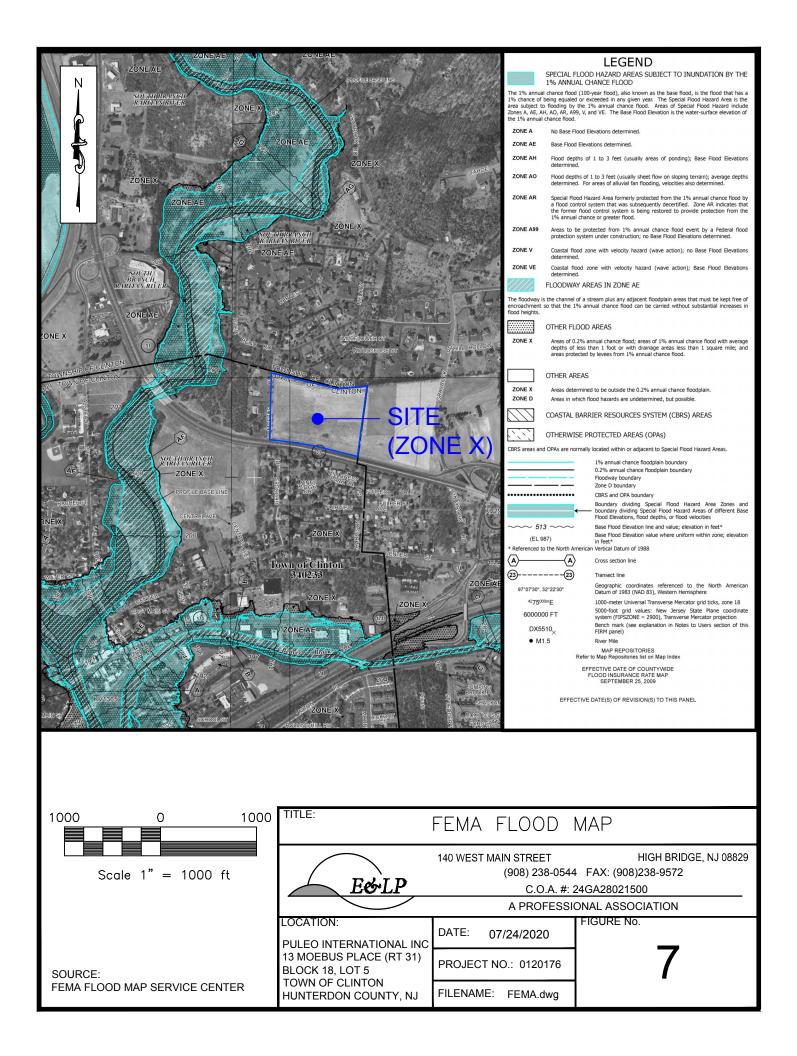

In conclusion, the proposed design includes a proposed stormwater management system for the property that meets all of the quantity, quality and recharge requirements outlined in the Stormwater Management Rules of N.J.A.C. 7:8.

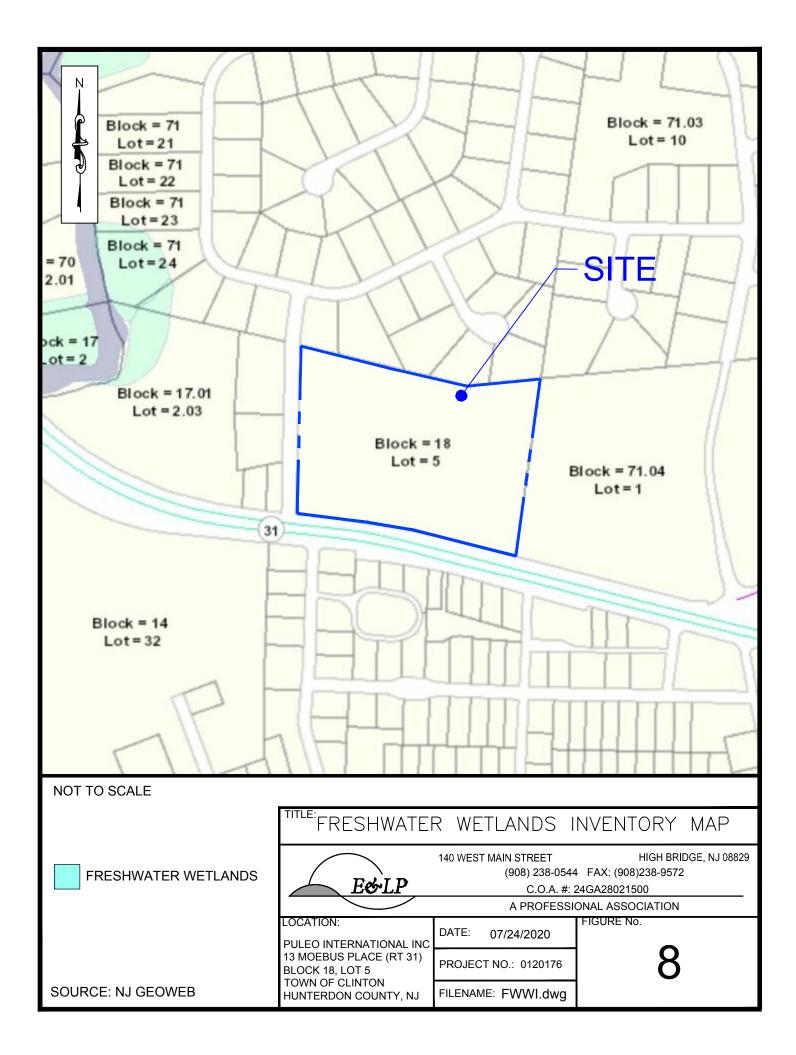












NOAA Atlas 14, Volume 2, Version 3 Location name: Clinton, New Jersey, USA* Latitude: 40.6437°, Longitude: -74.903° Elevation: 246.94 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PD	S-based p	oint preci	ipitation f	requency	estimates	s with 90%	confide	interva	als (in inc	hes) ¹
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.333	0.397	0.469	0.522	0.587	0.635	0.682	0.726	0.783	0.826
5-11111	(0.299-0.372)	(0.357-0.443)	(0.420-0.522)	(0.466-0.581)	(0.523-0.651)	(0.562-0.704)	(0.600-0.757)	(0.635-0.806)	(0.681-0.872)	(0.713-0.923)
10-min	0.532	0.635	0.751	0.835	0.936	1.01	1.08	1.15	1.24	1.30
	. ,	(0.571-0.708)	,	. ,		(0.895-1.12)	(0.954-1.20)	(1.01-1.28)	(1.08-1.38)	(1.12-1.45)
15-min	0.665	0.798 (0.717-0.890)	0.950 (0.851-1.06)	1.06 (0.943-1.17)	1.19 (1.06-1.32)	1.28 (1.13-1.42)	1.37 (1.21-1.52)	1.45 (1.27-1.61)	1.56 (1.36-1.74)	1.63 (1.41-1.83)
	. ,		, , , , , , , , , , , , , , , , , , ,	,	,			,		, ,
30-min	0.912 (0.817-1.02)	1.10 (0.991-1.23)	1.35 (1.21-1.50)	1.53 (1.37-1.70)	1.76 (1.56-1.95)	1.93 (1.71-2.14)	2.10 (1.85-2.33)	2.26 (1.98-2.51)	2.48 (2.16-2.76)	2.65 (2.28-2.96)
	1.14	1.38	1.73	1.99	2.34	2.61	2.89	3.17	3.56	3.86
60-min	(1.02-1.27)	(1.24-1.54)	(1.55-1.93)	(1.78-2.22)	(2.08-2.60)	(2.31-2.90)	(2.54-3.21)	(2.77-3.52)	(3.10-3.96)	(3.33-4.31)
	1.40	1.70	2.15	2.49	2.97	3.36	3.77	4.20	4.82	5.32
2-hr	(1.25-1.55)	(1.53-1.89)	(1.93-2.38)	(2.23-2.75)	(2.64-3.28)	(2.98-3.70)	(3.32-4.16)	(3.67-4.64)	(4.16-5.33)	(4.54-5.90)
	1.57	1.91	2.40	2.78	3.32	3.76	4.21	4.70	5.38	5.95
3-hr	(1.41-1.75)	(1.71-2.13)	(2.15-2.68)	(2.49-3.09)	(2.96-3.68)	(3.33-4.16)	(3.71-4.67)	(4.10-5.21)	(4.64-5.99)	(5.07-6.63)
C h =	2.02	2.45	3.07	3.57	4.30	4.91	5.57	6.29	7.34	8.22
6-hr	(1.82-2.26)	(2.21-2.74)	(2.77-3.42)	(3.21-3.98)	(3.83-4.78)	(4.34-5.46)	(4.88-6.19)	(5.45-6.97)	(6.26-8.15)	(6.92-9.16)
12-hr	2.50	3.03	3.83	4.50	5.48	6.33	7.27	8.31	9.87	11.2
12-111	(2.26-2.80)	(2.74-3.39)	(3.45-4.27)	(4.03-5.00)	(4.86-6.08)	(5.57-7.01)	(6.32-8.03)	(7.14-9.18)	(8.32-10.9)	(9.31-12.4)
24-hr	2.84	3.43	4.33	5.08	6.19	7.13	8.15	9.27	10.9	12.3
27-111	(2.61-3.11)	(3.15-3.76)	(3.97-4.73)	(4.64-5.55)	(5.62-6.74)	(6.43-7.75)	(7.29-8.86)	(8.21-10.1)	(9.53-11.9)	(10.6-13.4)
2-day	3.33	4.03	5.09	5.97	7.21	8.25	9.37	10.6	12.3	13.8
,	(3.06-3.67)	(3.70-4.44)	(4.66-5.61)	(5.44-6.55)	(6.54-7.91)	(7.44-9.03)	(8.39-10.2)	(9.37-11.6)	(10.8-13.5)	(11.9-15.1)
3-day	3.52	4.24	5.34	6.23	7.50	8.56	9.68	10.9	12.6	14.1
	(3.25-3.83)	(3.92-4.63)	(4.92-5.82)	(5.72-6.78)	(6.86-8.15)	(7.78-9.29)	(8.75-10.5)	(9.76-11.8)	(11.2-13.7)	(12.3-15.3)
4-day	3.70	4.46	5.58	6.49	7.79	8.86	10.00	11.2	12.9	14.4
	(3.44-4.00)	(4.14-4.82)	(5.17-6.03)	(6.01-7.01)	(7.17-8.39)	(8.13-9.55)	(9.12-10.8)	(10.2-12.1)	(11.6-14.0)	(12.8-15.6)
7-day	4.35 (4.05-4.68)	5.22 (4.86-5.61)	6.45 (6.00-6.93)	7.46 (6.93-8.01)	8.91 (8.23-9.56)	10.1 (9.30-10.8)	11.4 (10.4-12.2)	12.7 (11.6-13.7)	14.7 (13.2-15.8)	16.2 (14.5-17.5)
	5.00	5.97	7.28	8.33	9.81	11.0	12.2	13.5	15.3	16.8
10-day	(4.68-5.35)	(5.59-6.39)	(6.81-7.78)	(7.77-8.91)	(9.12-10.5)	(10.2-11.7)	(11.3-13.1)	(12.4-14.5)	(13.9-16.4)	(15.1-18.1)
	6.73	7.99	9.53	10.7	12.4	13.6	14.9	16.2	17.9	19.3
20-day	(6.35-7.15)	(7.53-8.48)	(8.98-10.1)	(10.1-11.4)	(11.6-13.1)	(12.8-14.5)	(13.9-15.8)	(15.0-17.2)	(16.5-19.1)	(17.7-20.6)
30-day	8.39	9.89	11.5	12.8	14.5	15.7	17.0	18.2	19.8	20.9
SU-uay	(7.96-8.85)	(9.38-10.4)	(10.9-12.2)	(12.1-13.5)	(13.7-15.2)	(14.8-16.6)	(15.9-17.9)	(17.0-19.2)	(18.4-20.9)	(19.4-22.2)
45-day	10.7	12.5	14.4	15.8	17.6	18.9	20.2	21.4	22.9	24.0
-J-uay	(10.2-11.2)	(11.9-13.2)	(13.7-15.1)	(15.1-16.6)	(16.7-18.5)	(18.0-19.9)	(19.1-21.3)	(20.2-22.5)	(21.6-24.1)	(22.5-25.3)
60-day	12.8	15.0	17.1	18.7	20.6	22.1	23.4	24.6	26.1	27.2
	(12.2-13.4)	(14.3-15.7)	(16.3-17.9)	(17.8-19.6)	(19.6-21.7)	(21.0-23.2)	(22.2-24.6)	(23.4-25.9)	(24.7-27.5)	(25.7-28.7)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Average recurrence interval

(years)

1

2 5

10 25 50

100 200 500

- 1000

Duration

- 2-day

3-day

4-day

7-day

10-day 20-day

30-day

45-day

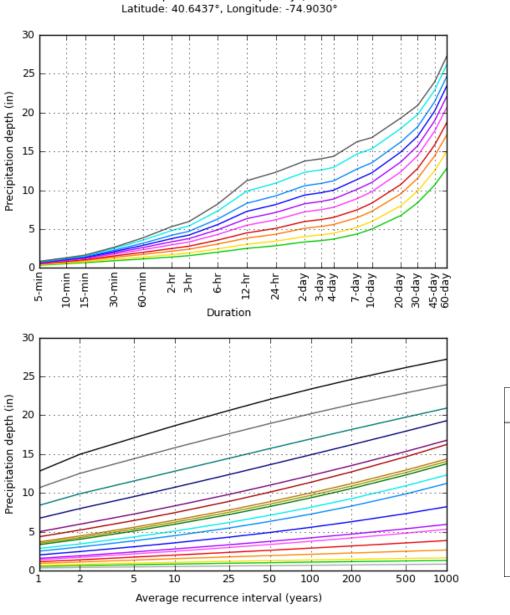
- 60-day

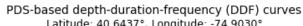
5-min

10-min

15-min 30-min

60-min


2-hr


3-hr

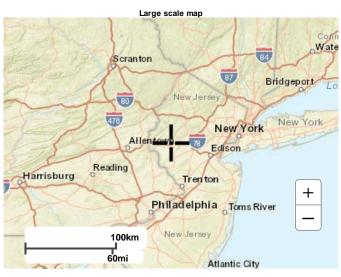
6-hr

12-hr

24-hr


NOAA Atlas 14, Volume 2, Version 3

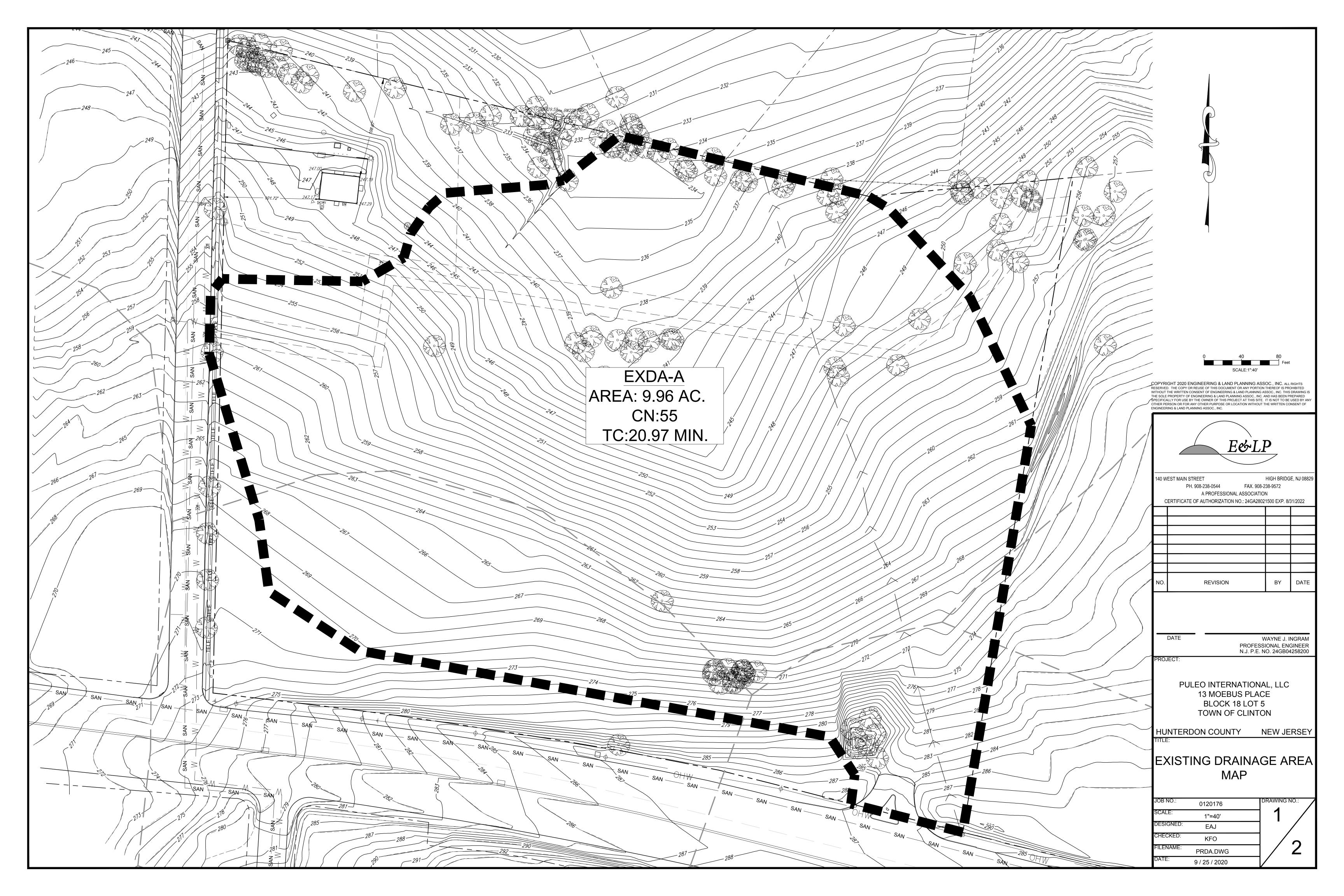
Created (GMT): Thu Oct 15 17:55:23 2020

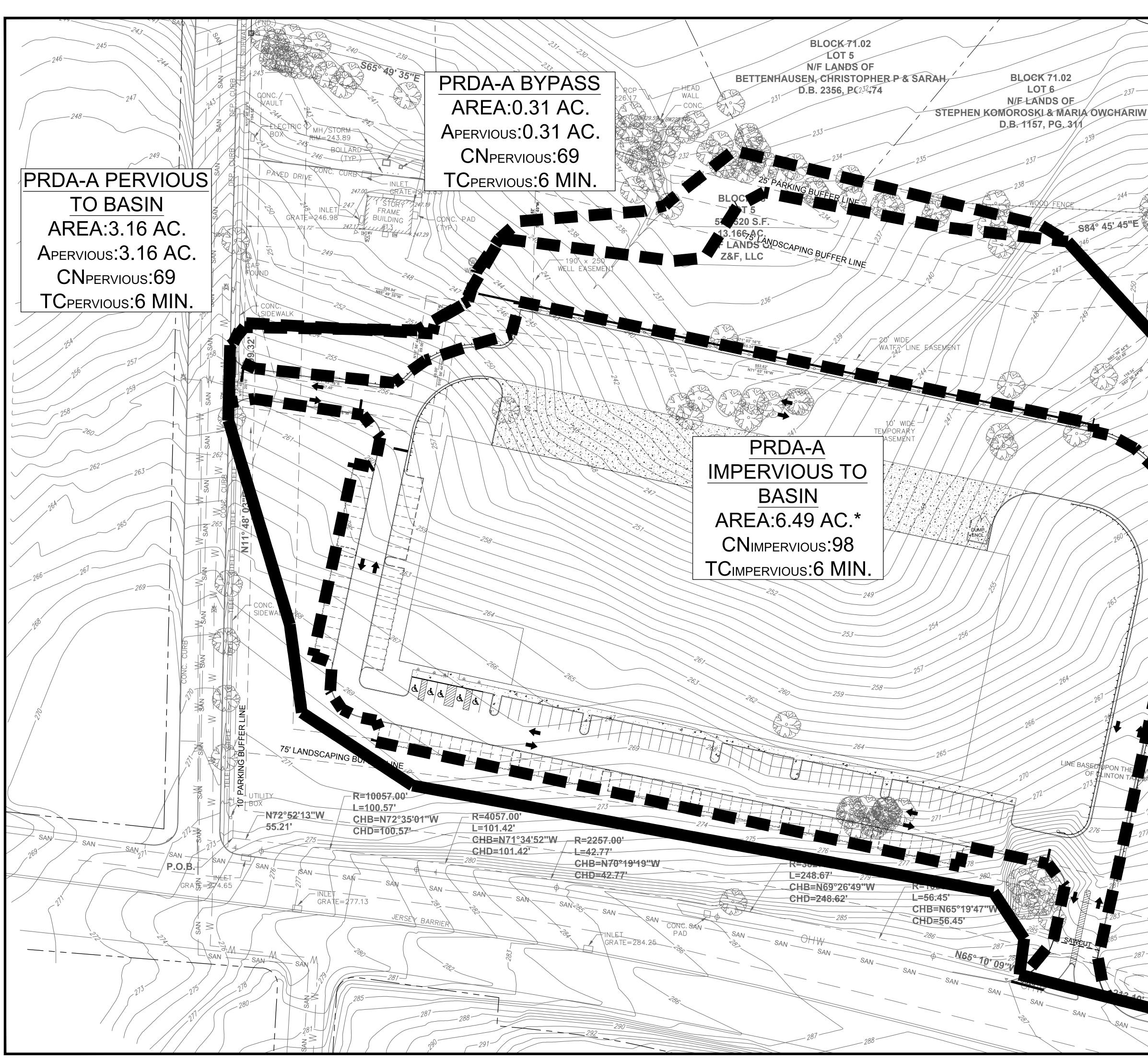

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial


Back to Top


US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

BLOCK 71.02 LOT 7 N/F LANDS OF WADE, ROBERT F & JOAN V D.B. 2008, PG. 488 COPYRIGHT 2020 ENGINEERING & LAND PLANNING ASSOC., INC. ALL RIGHTS RESERVED. THE COPY OR REUSE OF THIS DOCUMENT OR ANY PORTION THEREOF IS PROHIBITED WITHOUT THE WRITTEN CONSENT OF ENGINEERING & LAND PLANNING ASSOC., INC. THIS DRA THE SOLE PROPERTY OF ENGINEERING & LAND PLANNING ASSOC., INC. AND HAS BEEN PREPARED / SPECIFICALLY FOR USE BY THE OWNER OF THIS PROJECT AT THIS SITE. IT IS NOT TO BE USED BY A OTHER PERSON OR FOR ANY OTHER PURPOSE OR LOCATION WITHOUT THE WE ENGINEERING & LAND PLANNING ASSOC., INC. E&LP HIGH BRIDGE, NJ 0882 140 WEST MAIN STREET PH. 908-238-0544 FAX. 908-238-9572 A PROFESSIONAL ASSOCIATION CERTIFICATE OF AUTHORIZATION NO .: 24GA28021500 EXP. 8/31/2022 DATE BY REVISION NO. DATE WAYNE J. INGRAM PROFESSIONAL ENGINEER N.J. P.E. NO. 24GB04258200 ROJEC[®] PULEO INTERNATIONAL, LLC 13 MOEBUS PLACE BLOCK 18 LOT 5 TOWN OF CLINTON HUNTERDON COUNTY NEW JERSEY PROPOSED DRAINAGE AREA MAP JOB NO.: Rawing No. 0120176 **^** SCALE: 1"=40' ESIGNED: EAJ CHECKED: KFO **n** ILENAME PRDA.DWG 9 / 25 / 2020

Project:	
Location:	

By: _____ Date: _____ Chk'd: _____ Revised: _____

Watershed:

EXDA A - Pre-Developed

RUNOFF CURVE NUMBER CALCULATIONS:

(S.C.S. TR-55 method)

Soil name and	Cover Description	Cn	Area		Product
hydrologic group			(sf)	(acres)	of CN x Area
В	Wood	55	433,744	9.96	547.66
		Totals =		9.96	547.66
				0.00	0.1100
	Composite Cn =	547.66	-	=	55.00

9.96

Project: Location: By: _____ Date: _____ Chk'd: _____ Revised: _____

Watershed:

PRDA A - Pervious to Basin-Post Developed

RUNOFF CURVE NUMBER CALCULATIONS:

(S.C.S. TR-55 method)

Soil name and hydrologic group	Cover Description	Cn	Ar (sf)	ea (acres)	Product of CN x Area
В	Lawn	69	137,738	3.16	218.18
		Totals =		3.16	218.18
	Composite Cn =	218.18		=	69.00

3.16

Project: Location: By: _____ Date: _____ Chk'd: _____ Revised: _____

Watershed:

PRDA A - Pervious-Post Developed

RUNOFF CURVE NUMBER CALCULATIONS:

(S.C.S. TR-55 method)

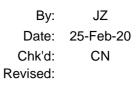
Soil name and hydrologic group	Cover Description	Cn	Ar (sf)	ea (acres)	Product of CN x Area
В	Impervious	98	282,497	6.49	635.55
		Totals =		6.49	635.55
	Composite Cn =	<u>635.55</u> 6.49	-	=	98.00

Project: Location: By: _____ Date: _____ Chk'd: _____ Revised: _____

Watershed:

PRDA A - Pervious Bypass Area-Post Developed

RUNOFF CURVE NUMBER CALCULATIONS:


(S.C.S. TR-55 method)

Soil name and hydrologic group	Cover Description	Cn	Ar (sf)	ea (acres)	Product of CN x Area
В	Lawn	69	13,509	0.31	21.40
		Totals =		0.31	21.40
	Composite Cn =	<u>21.40</u> 0.31		=	69.00

Project: Puleo International, Inc 13 Moebus Place, Town of Clinton, NJ Location:

Drainage Area:

EXDA-A

TIME OF CONCENTRATION

(National Engineering Handbook Chapter 15 - Velocity Method)

Sheet Flow

S	egment ID	А	В	С
Surface Description (Table 15-1)		Woods		
Manning's Roughness Coefficient, n (Table	0.4			
Sheet Flow Length, L = (100)(sqrt(s))/n	100			
Two Year 24 Hour Rainfall, P2 in.		3.43		
Land Slope, s ft/ft		0.0720		
0.007(nL)^0.8				
Tt = (P2^0.5)(s^0.4)	hr	0.2071	0.0000	0.0000
Sheet flow Subtotal Tt =	hr			0.2071

Shallow Concentrated Flow

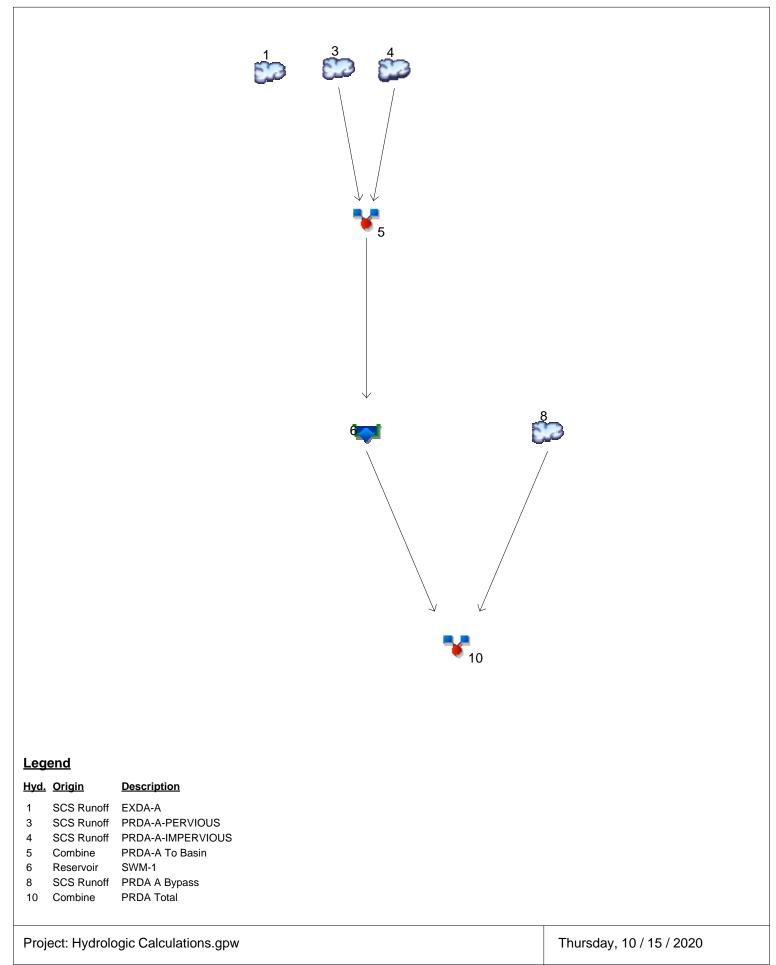
:	Segment ID	А	В	С
Surface Description (Figure 15-4)		Woodland	Pavement	Short Grass
Flow Length, L	ft	641		
Watercourse Slope, s	ft/ft	0.0700		
Average Velocity, V (Figure 15-4)	fps	1.25		
L				
$Tt = (3600 \times V)$	hr	0.1424	0.0000	0.0000
Shallow concentrated flow Subtotal Tt =	hr			0.1424

Open Channel Flow

	Segment ID		
Cross Sectional Flow Area, a	sq ft		
Wetted Perimeter, Pw	ft		
Hydraulic Radius, $r = a/Pw$	ft		
Channel Slope, s	ft/ft		
Manning's Roughness Coefficient, n			
Velocity, V = (1.486)(r^2/3)(s^1/2)/n	fps		
Flow length, L	ft		
L			
$Tt = (3600 \times V)$	hr	0.0000	
Channel flow Subtotal Tt =	e hr		0.0000

Pipe Flow

	Segment ID		
Structure 'From' - 'To'			
Flow Length, L	ft		
Pipe Diameter, D	in		
Manning's Roughness Coefficient, n			
Pipe Slope, s	ft/ft		
Velocity, V = (1.486)(r^2/3)(s^1/2)/n	fps		
L			
Tt = (3600 x V)	hr	0.0000	
Pipe flow Subtotal Tt	= hr		0.0000


Total Tt = 0.3495 hours =

20.97 minutes

Watershed Model Schematic

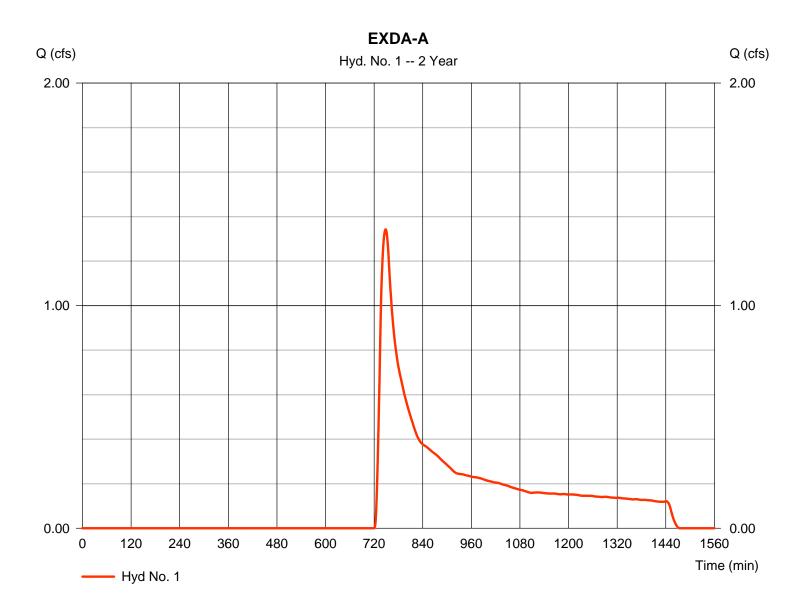
Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

lyd. No.		Inflow hyd(s)	Peak Outflow (cfs)							Hydrograph Description	
	(origin)	1190(0)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			1.342			7.176			23.84	EXDA-A
3	SCS Runoff			3.692			8.602			19.15	PRDA-A-PERVIOUS
4	SCS Runoff			24.25			36.12			58.13	PRDA-A-IMPERVIOUS
5	Combine	3, 4		27.93			44.72			77.28	PRDA-A To Basin
6	Reservoir	5		0.495			1.858			18.41	SWM-1
8	SCS Runoff			0.362			0.844			1.879	PRDA A Bypass
10	Combine	6, 8,		0.650			1.903			18.89	PRDA Total

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

	(cfs)	(min)	Peak (min)	volume (cuft)	hyd(s)	elevation (ft)	strge used (cuft)	Description
SCS Runoff	1.342	1	748	11,772				EXDA-A
SCS Runoff	3.692	1	728	10,792				PRDA-A-PERVIOUS
SCS Runoff	24.25	1	727	77,663				PRDA-A-IMPERVIOUS
Combine	27.93	1	727	88,455	3, 4			PRDA-A To Basin
Reservoir	0.495	1	1081	51,681	5	238.46	69,810	SWM-1
SCS Runoff	0.362	1	728	1,059				PRDA A Bypass
Combine	0.650	1	728	52,739	6, 8,			PRDA Total
	SCS Runoff Combine Reservoir SCS Runoff Combine	SCS Runoff 24.25 Combine 27.93 Reservoir 0.495 SCS Runoff 0.362 Combine 0.650	SCS Runoff24.251Combine27.931Reservoir0.4951SCS Runoff0.3621	SCS Runoff 24.25 1 727 Combine 27.93 1 727 Reservoir 0.495 1 1081 SCS Runoff 0.362 1 728 Combine 0.650 1 728	SCS Runoff 24.25 1 727 77,663 Combine 27.93 1 727 88,455 Reservoir 0.495 1 1081 51,681 SCS Runoff 0.362 1 728 1,059 Combine 0.650 1 728 52,739 Combine 0.650 1 728 52,739	SCS Runoff 24.25 1 727 77,663 Combine 27.93 1 727 88,455 3,4 Reservoir 0.495 1 1081 51,681 5 SCS Runoff 0.362 1 728 1,059 Combine 0.650 1 728 52,739 6,8, Combine 0.650 1 728 52,739 6,8, SCS Runoff 0.650 1 728 52,739 6,8,	SCS Runoff 24.25 1 727 77,663 Combine 27.93 1 727 88,455 3,4 Reservoir 0.495 1 1081 51,681 5 238.46 SCS Runoff 0.362 1 728 1.059 Combine 0.650 1 728 52,739 6, 8, Combine 0.650 1 728 52,739 6, 8, SCS Runoff 0.650 1 728 52,739 6, 8, Combine 0.650 1 728 52,739 6, 8, SCS Runoff 0.650 1 728 52,739 6, 8, SC Runoff 0.650 1 <td>SCS Runoff 24.25 1 727 77,663 Combine 27,93 1 727 88,455 3,4 Reservoir 0.495 1 1081 51,681 5 238.46 69,810 SCS Runoff 0.362 1 728 1,059 Combine 0.650 1 728 52,739 6,8, Solution I</td>	SCS Runoff 24.25 1 727 77,663 Combine 27,93 1 727 88,455 3,4 Reservoir 0.495 1 1081 51,681 5 238.46 69,810 SCS Runoff 0.362 1 728 1,059 Combine 0.650 1 728 52,739 6,8, Solution I

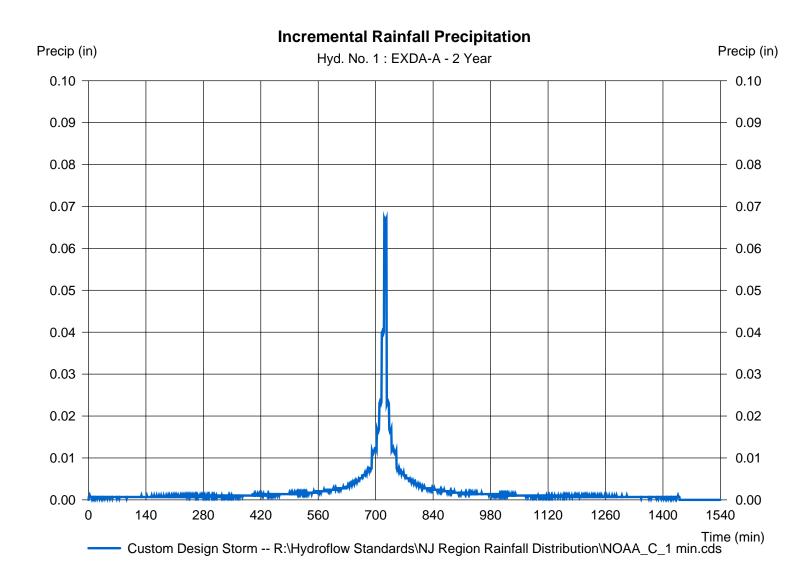

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 1

EXDA-A

Hydrograph type	= SCS Runoff	Peak discharge	= 1.342 cfs
Storm frequency	= 2 yrs	Time to peak	= 748 min
Time interval	= 1 min	Hyd. volume	= 11,772 cuft
Drainage area	= 9.960 ac	Curve number	= 55
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 21.00 min
Total precip.	= 3.43 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ F	Regloarp Ratarofadt Distribut	tiona\M484AA_C_1 min.cds

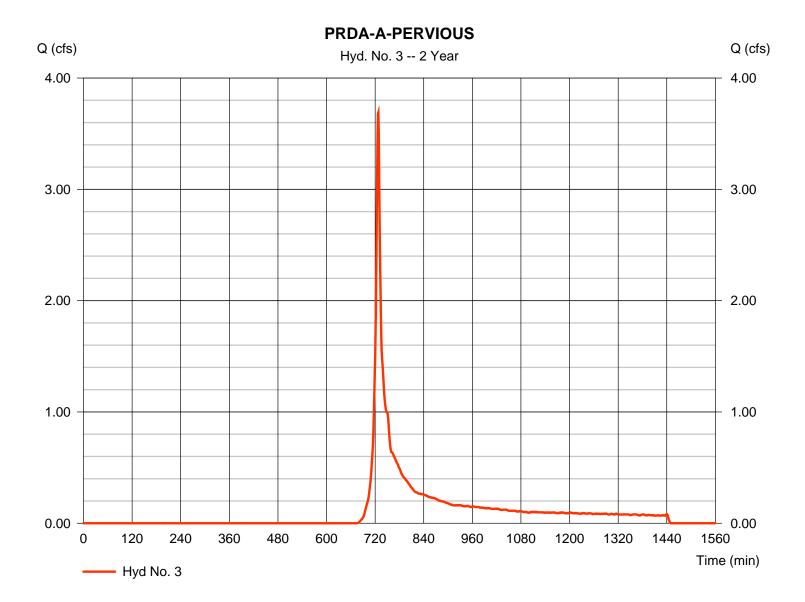

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 1

EXDA-A

Storm Frequency	= 2 yrs	Time interval	= 1 min
Total precip.	= 3.4300 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standard	s\NJ Region Rainfall Di	stribution\NOAA_C_1 min.cds

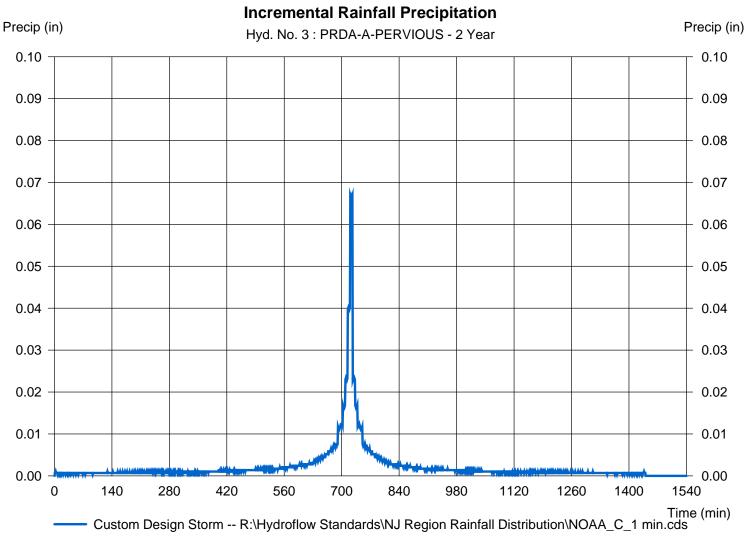

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 3

PRDA-A-PERVIOUS

Hydrograph type	= SCS Runoff	Peak discharge	= 3.692 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 10,792 cuft
Drainage area	= 3.160 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.43 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ I	Regionanp Batanoftadir Distribu	tiona∖N484AA_C_1 min.cds

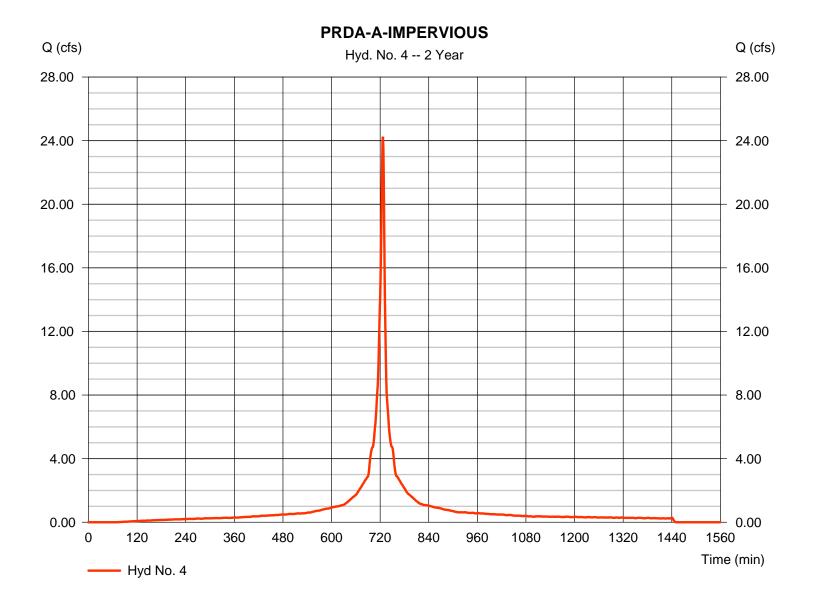

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 3

PRDA-A-PERVIOUS

Storm Frequency	= 2 yrs	Time interval	= 1 min
Total precip.	= 3.4300 in	Distribution	= Custom
Storm duration	= R:\Hydroflow State	ndards\NJ Region Rainfall	Distribution\NOAA_C_1 min.cds

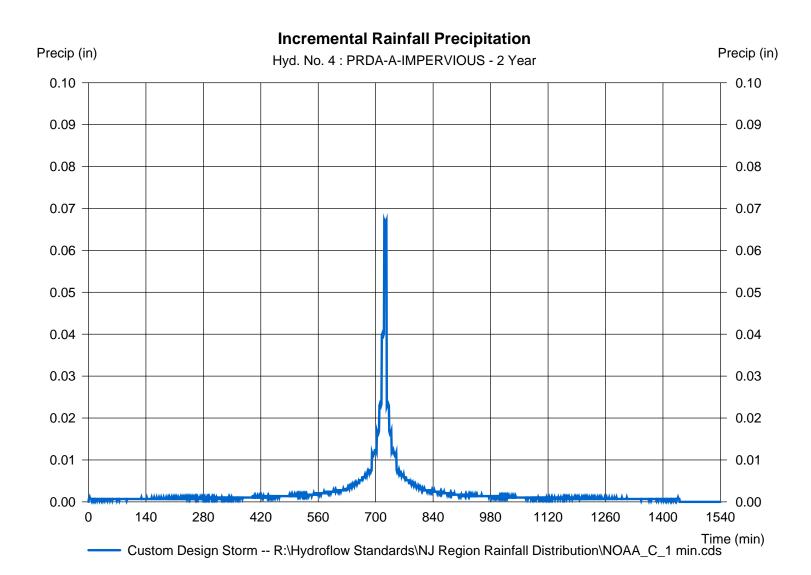

In an an antal Dainfall Draainitation

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 4

PRDA-A-IMPERVIOUS

Hydrograph type	= SCS Runoff	Peak discharge	= 24.25 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 77,663 cuft
Drainage area	= 6.490 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.43 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standa	ards\NJReginoarpetatarontadirDistribu	utiona\M84AA_C_1 min.cds

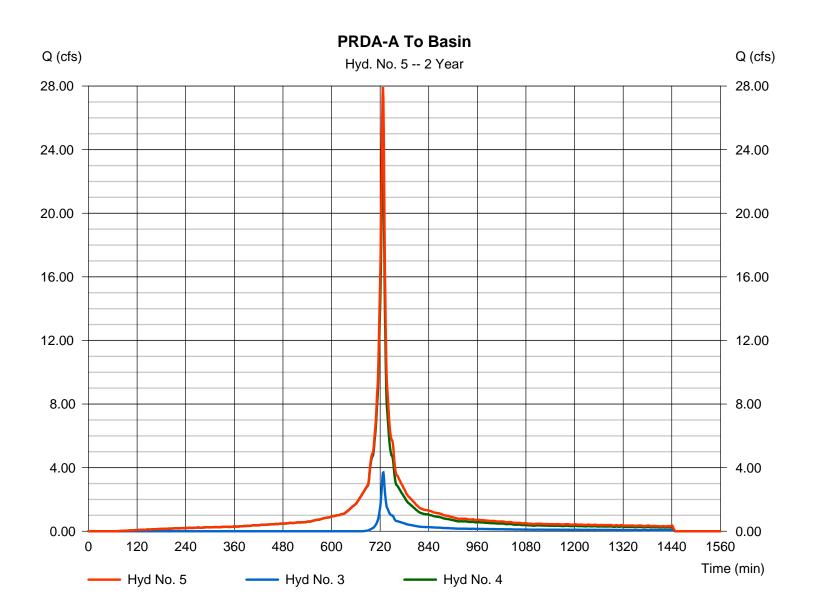

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 4

PRDA-A-IMPERVIOUS

Storm Frequency	= 2 yrs	Time interval	= 1 min
Total precip.	= 3.4300 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Sta	ndards\NJ Region Rainfal	I Distribution\NOAA_C_1 min.cds


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

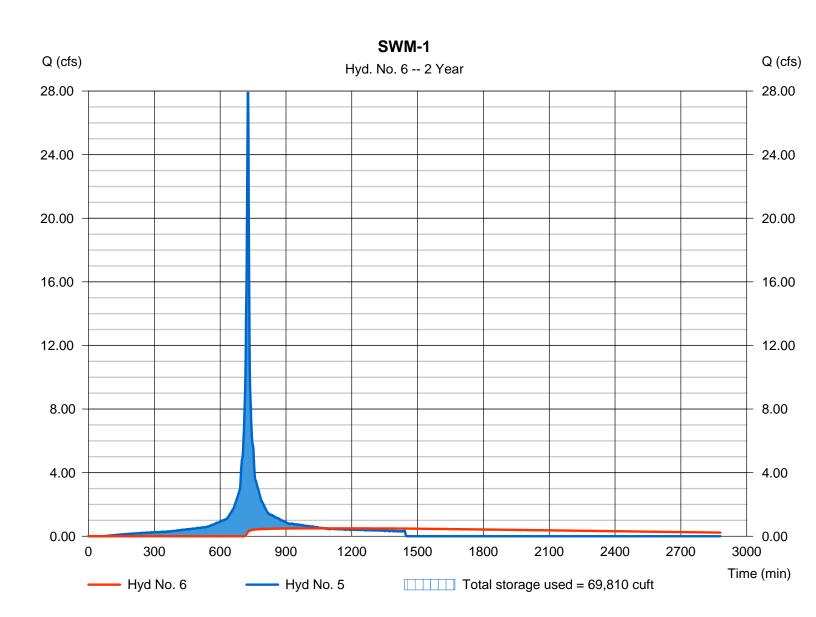
Thursday, 10 / 15 / 2020

Hyd. No. 5

PRDA-A To Basin

Hydrograph type	= Combine	Peak discharge	= 27.93 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 88,455 cuft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 9.650 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020


Thursday, 10 / 15 / 2020

Hyd. No. 6

SWM-1

Hydrograph type	= Reservoir	Peak discharge	= 0.495 cfs
Storm frequency	= 2 yrs	Time to peak	= 1081 min
Time interval	= 1 min	Hyd. volume	= 51,681 cuft
Inflow hyd. No.	= 5 - PRDA-A To Basin	Max. Elevation	= 238.46 ft
Reservoir name	= BIORETENTION BASIN	Max. Storage	= 69,810 cuft

Storage Indication method used.

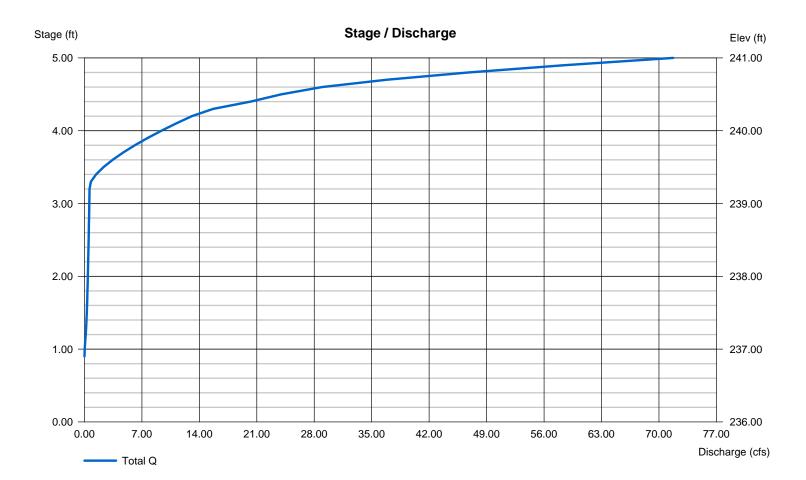
Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 1 - BIORETENTION BASIN

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 236.00 ft


Stage / Storage Table

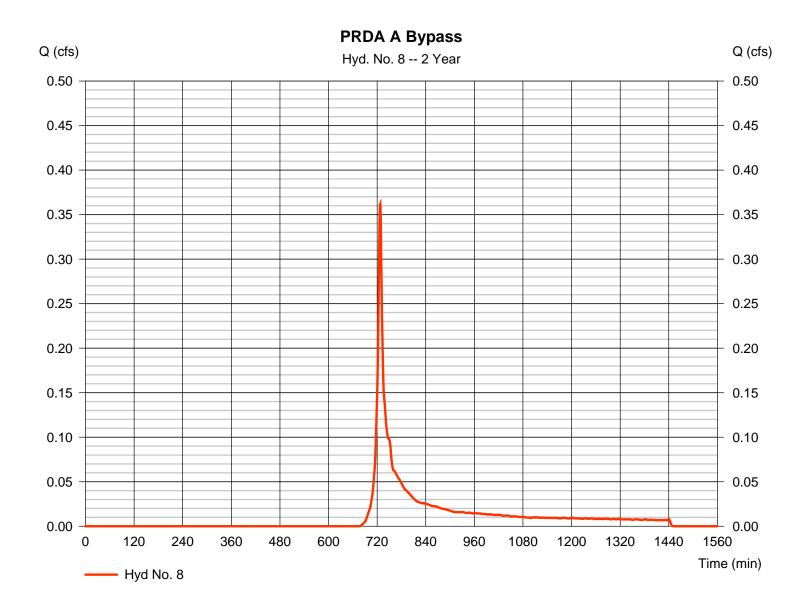
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	236.00	24,863	0	0
1.00	237.00	27,631	26,232	26,232
2.00	238.00	30,462	29,032	55,264
3.00	239.00	33,357	31,895	87,160
4.00	240.00	36,316	34,823	121,982
5.00	241.00	39,338	37,813	159,795

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	4.00	0.00	0.00	Crest Len (ft)	= 16.00	4.00	50.00	0.00
Span (in)	= 18.00	4.00	0.00	0.00	Crest El. (ft)	= 240.25	239.25	240.50	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	2.60	3.33
Invert El. (ft)	= 231.00	236.90	0.00	0.00	Weir Type	= 1	Rect	Broad	
Length (ft)	= 1.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.50	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

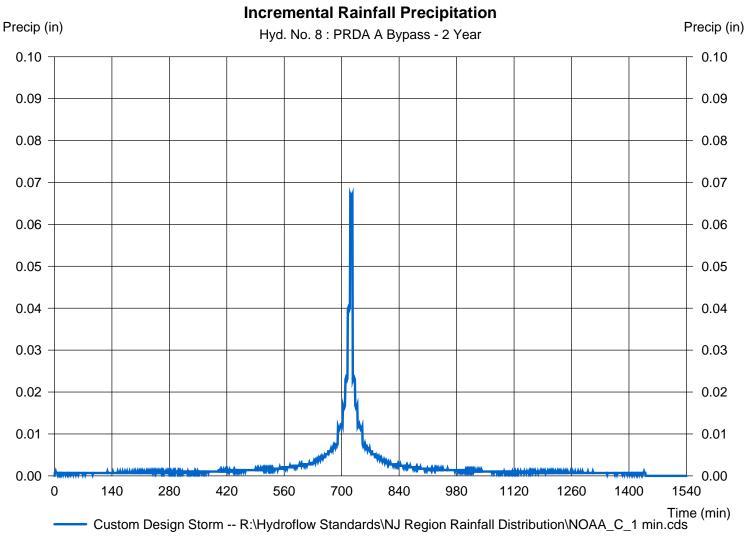

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 8

PRDA A Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.362 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 1,059 cuft
Drainage area	= 0.310 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.43 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ F	Regitoenp Batarofted Ir Distribu	tiona\M484AA_C_1 min.cds


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

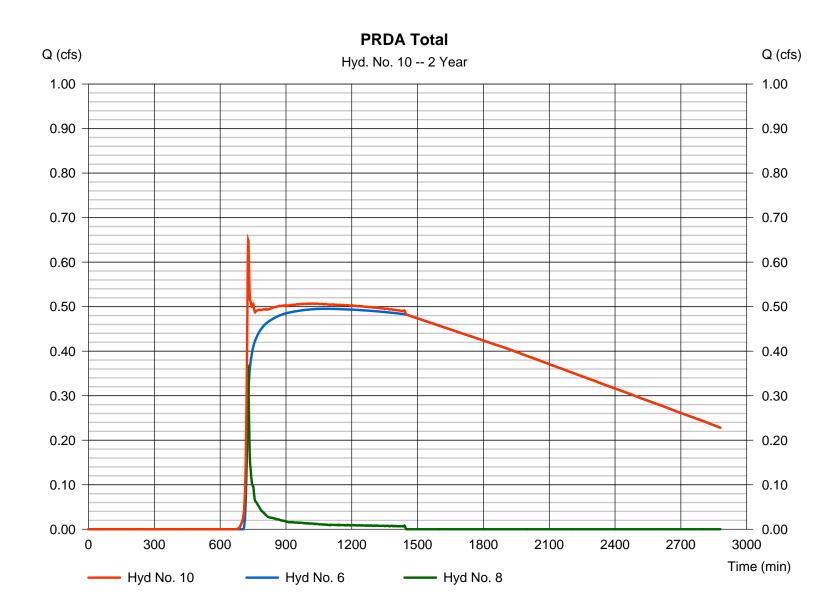
Thursday, 10 / 15 / 2020

Hyd. No. 8

PRDA A Bypass

Storm Frequency	= 2 yrs	Time interval	= 1 min
Total precip.	= 3.4300 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Sta	ndards\NJ Region Rainfall	Distribution\NOAA_C_1 min.cds

In even entel Deinfell Drestriketter


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 10

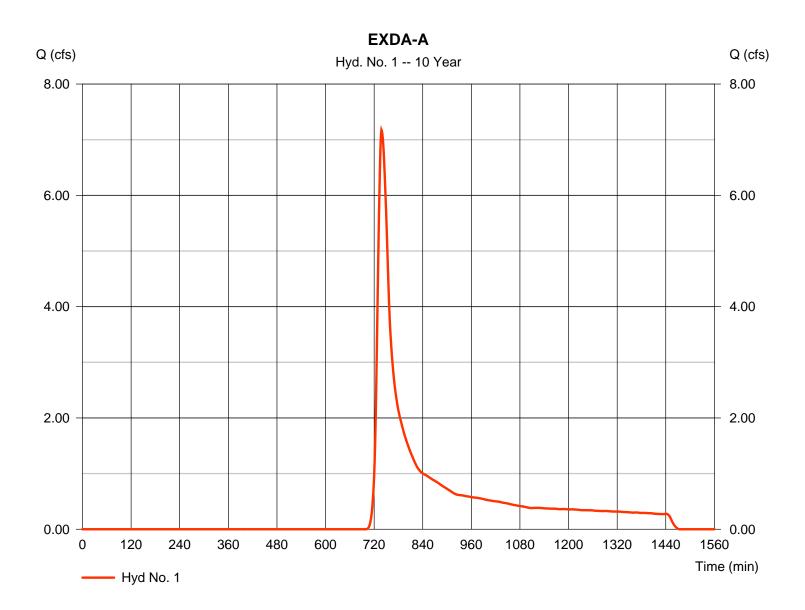
PRDA Total

Hydrograph type	= Combine	Peak discharge	= 0.650 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 52,739 cuft
Inflow hyds.	= 6, 8	Contrib. drain. area	= 0.310 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	7.176	1	738	37,235				EXDA-A
3	SCS Runoff	8.602	1	727	23,844				PRDA-A-PERVIOUS
4	SCS Runoff	36.12	1	727	117,661				PRDA-A-IMPERVIOUS
5	Combine	44.72	1	727	141,506	3, 4			PRDA-A To Basin
6	Reservoir	1.858	1	853	89,479	5	239.45	102,791	SWM-1
8	SCS Runoff	0.844	1	727	2,339				PRDA A Bypass
10	Combine	1.903	1	851	91,818	6, 8,			PRDA Total
Hyd	drologic Calc	ulations.g	Ipw		Return F	Period: 10	Year	Thursday,	10 / 15 / 2020

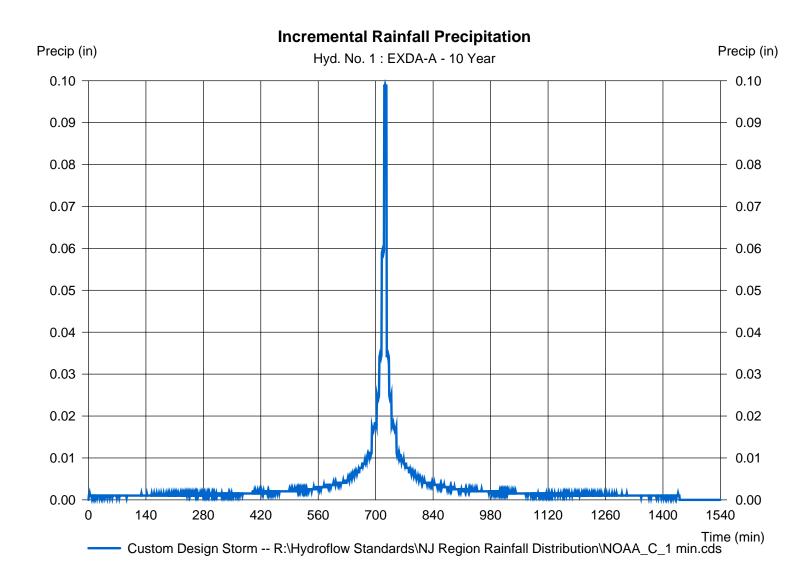

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 1

EXDA-A

Hydrograph type	= SCS Runoff	Peak discharge	= 7.176 cfs
Storm frequency	= 10 yrs	Time to peak	= 738 min
Time interval	= 1 min	Hyd. volume	= 37,235 cuft
Drainage area	= 9.960 ac	Curve number	= 55
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 21.00 min
Total precip.	= 5.08 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ F	Regloarp Rataroftad Ir Distribut	tio n ∖ №8 4A_C_1 min.cds

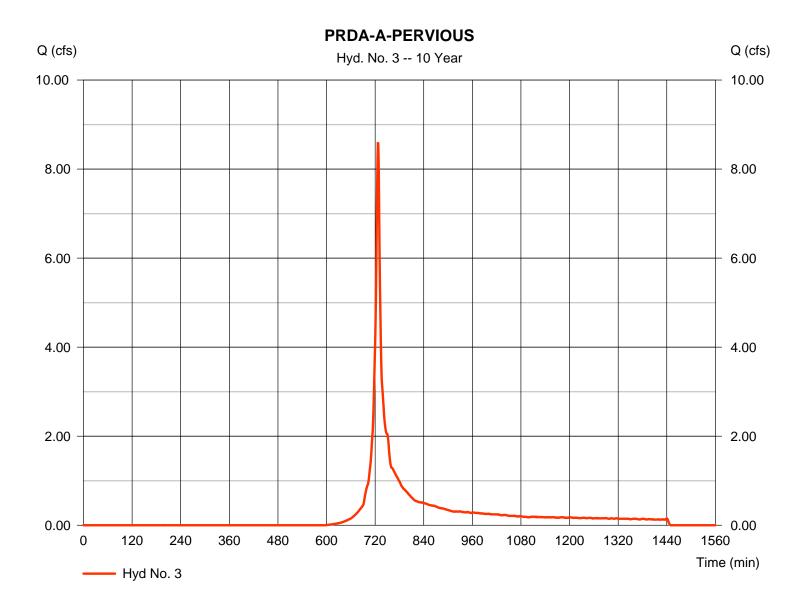

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 1

EXDA-A

Storm Frequency	= 10 yrs	Time interval	= 1 min
Total precip.	= 5.0800 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Sta	ndards\NJ Region Rainfall	Distribution\NOAA_C_1 min.cds

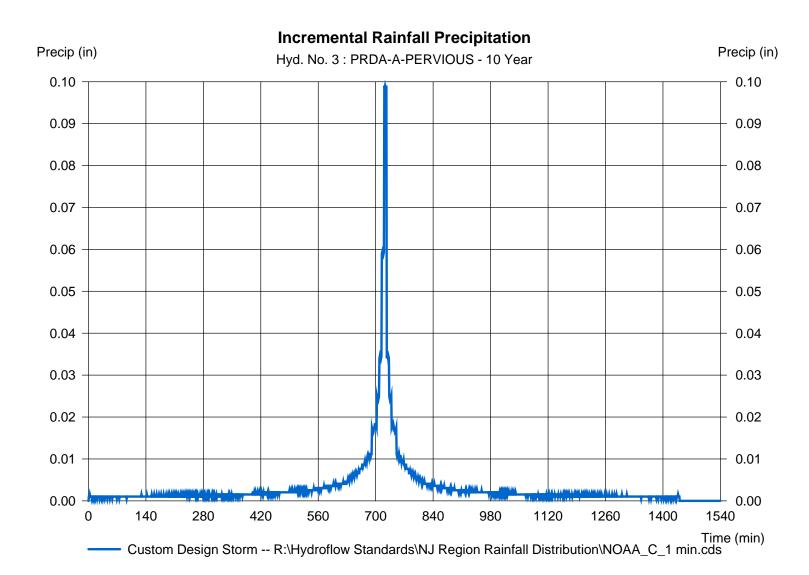

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 3

PRDA-A-PERVIOUS

Hydrograph type	= SCS Runoff	Peak discharge	= 8.602 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 23,844 cuft
Drainage area	= 3.160 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.08 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ I	Regitoenp Ratian of teal It Distribu	tion/\AB4A_C_1 min.cds

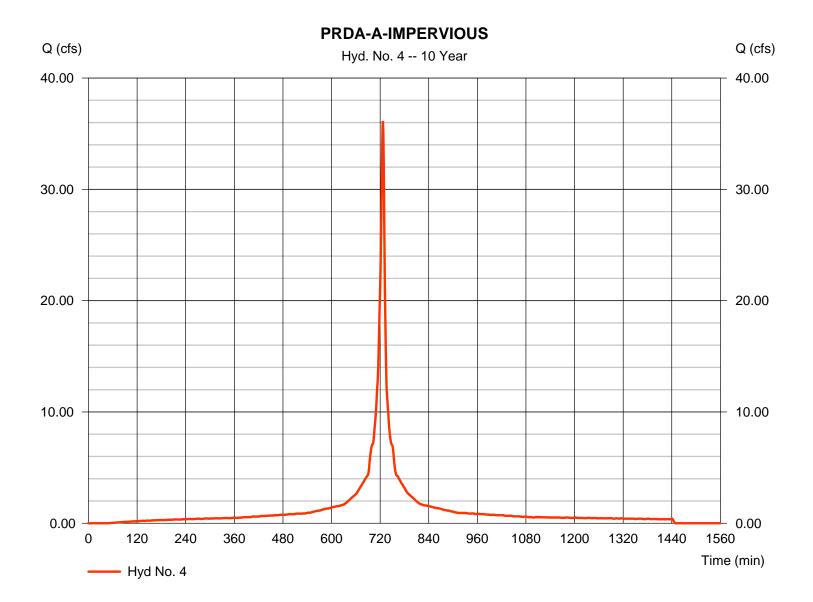

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 3

PRDA-A-PERVIOUS

Storm Frequency	= 10 yrs	Time interval	= 1 min
Total precip.	= 5.0800 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Star	ndards\NJ Region Rainfall	Distribution\NOAA_C_1 min.cds

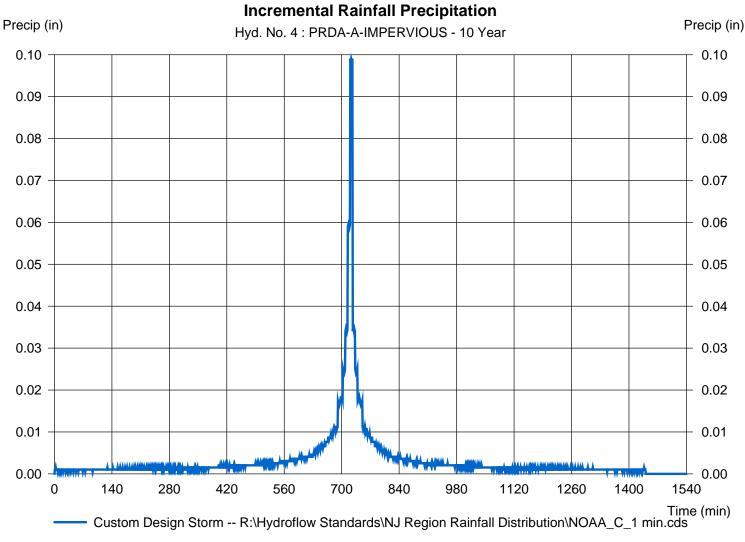

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 4

PRDA-A-IMPERVIOUS

Hydrograph type	= SCS Runoff	Peak discharge	= 36.12 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 117,661 cuft
Drainage area	= 6.490 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.08 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ F	Regiloarp Bataroftadir Distribu	tion/M84A_C_1 min.cds

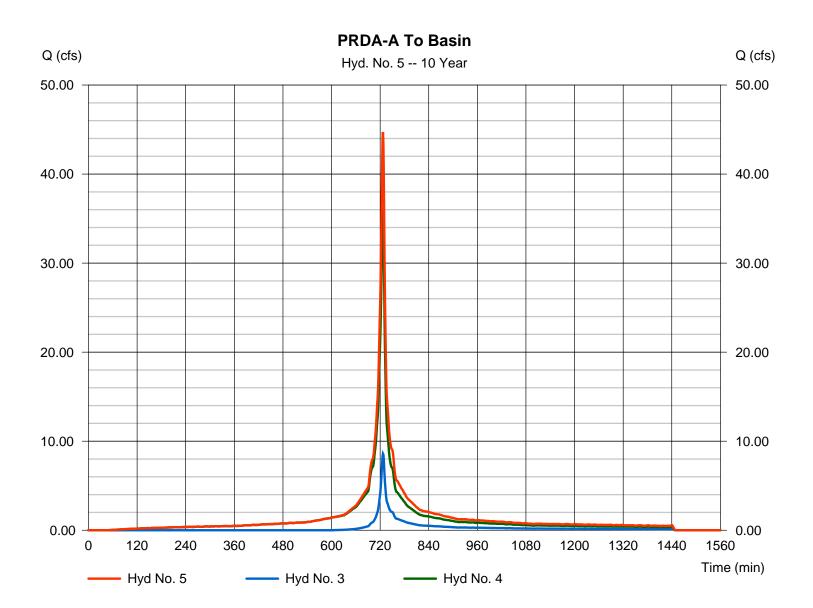

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 4

PRDA-A-IMPERVIOUS

Storm Frequency	= 10 yrs	Time interval	= 1 min
Total precip.	= 5.0800 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standard	s\NJ Region Rainfall Di	stribution\NOAA_C_1 min.cds


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

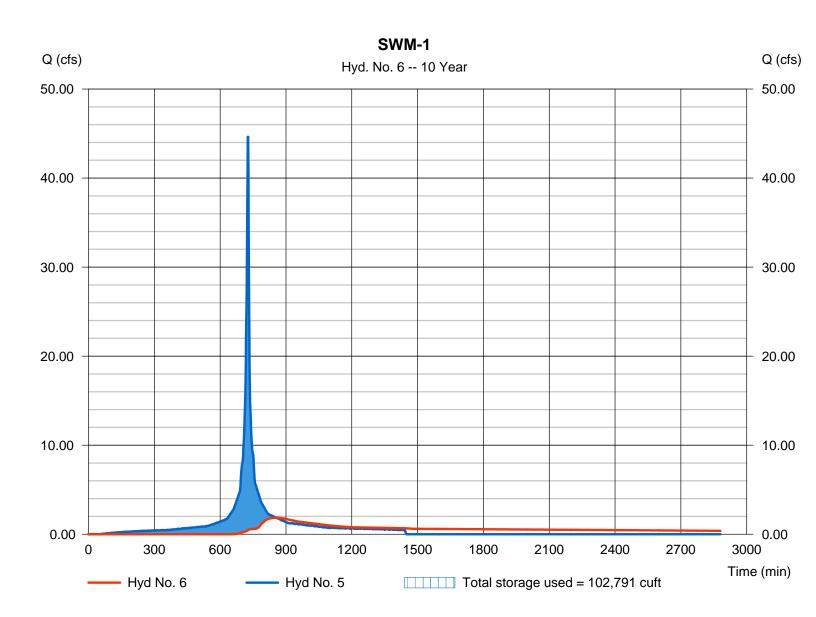
Thursday, 10 / 15 / 2020

Hyd. No. 5

PRDA-A To Basin

Hydrograph type	= Combine	Peak discharge	 = 44.72 cfs = 727 min = 141,506 cuft = 9.650 ac
Storm frequency	= 10 yrs	Time to peak	
Time interval	= 1 min	Hyd. volume	
Inflow hyds.	= 3, 4	Contrib. drain. area	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

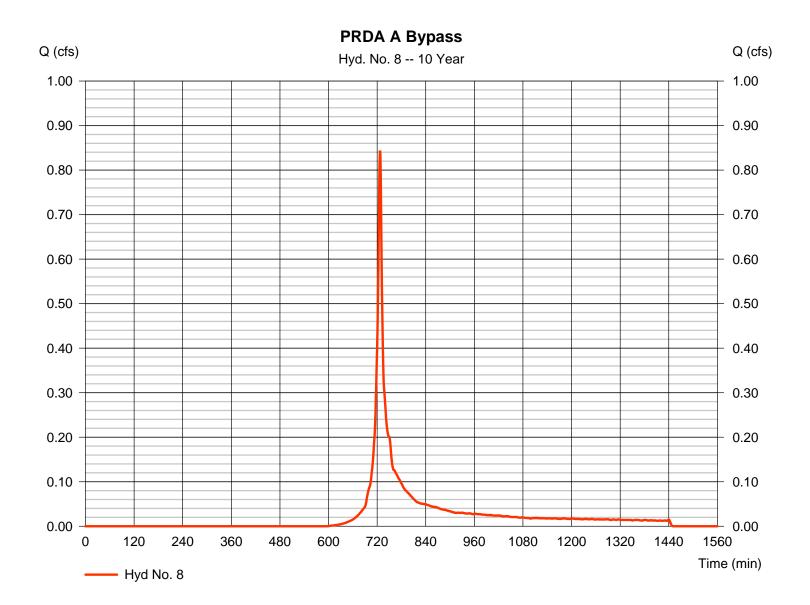

Thursday, 10 / 15 / 2020

Hyd. No. 6

SWM-1

Hydrograph type	= Reservoir	Peak discharge	= 1.858 cfs
Storm frequency	= 10 yrs	Time to peak	= 853 min
Time interval	= 1 min	Hyd. volume	= 89,479 cuft
Inflow hyd. No.	= 5 - PRDA-A To Basin	Max. Elevation	= 239.45 ft
Reservoir name	= BIORETENTION BASIN	Max. Storage	= 102,791 cuft

Storage Indication method used.

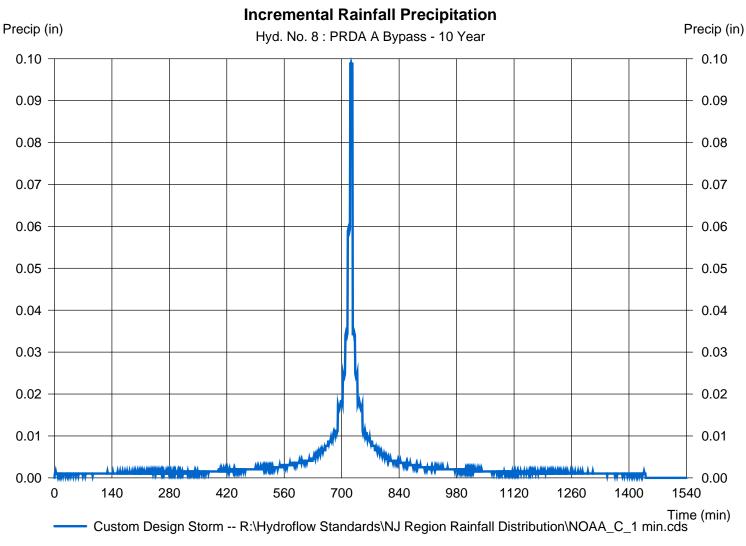

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 8

PRDA A Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.844 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 2,339 cuft
Drainage area	= 0.310 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.08 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ F	Regitoenp Ratian of teal It Distribu	tion \M&AA_C_1 min.cds
	-		

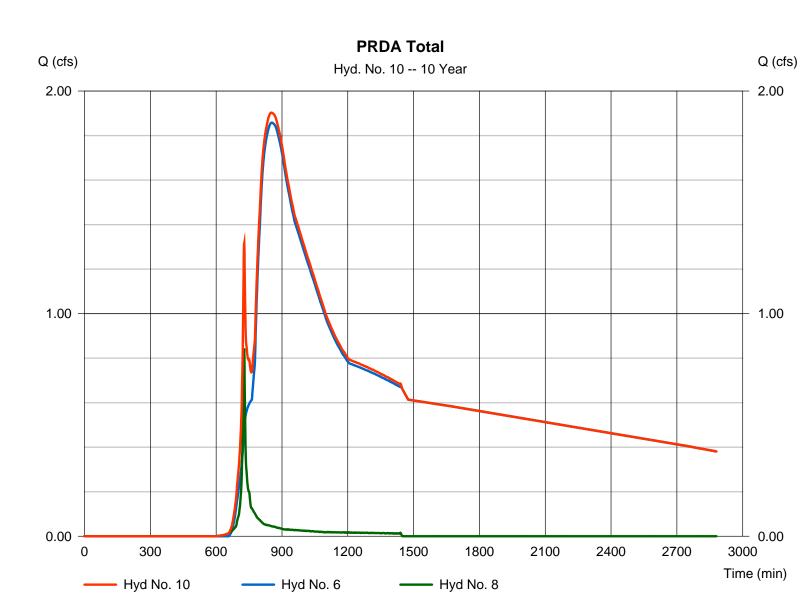

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 8

PRDA A Bypass

Storm Frequency	= 10 yrs	Time interval	= 1 min
Total precip.	= 5.0800 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Sta	ndards\NJ Region Rainfall	Distribution\NOAA_C_1 min.cds


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 10

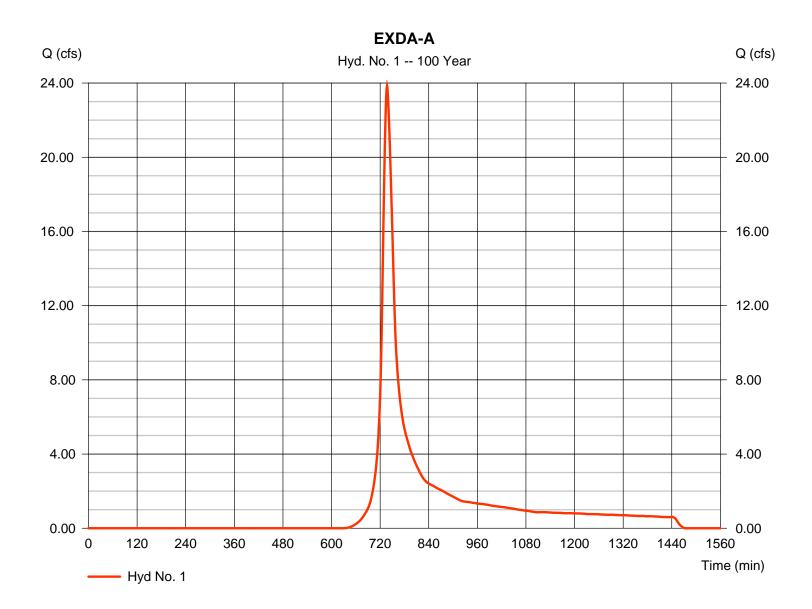
PRDA Total

Hydrograph type= CombinePeak dischargStorm frequency= 10 yrsTime to peakTime interval= 1 minHyd. volumeInflow hyds.= 6, 8Contrib. drain.	= 851 min = 91,818 cuft
--	----------------------------

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	23.84	1	737	105,387				EXDA-A
3	SCS Runoff	19.15	1	727	52,964				PRDA-A-PERVIOUS
4	SCS Runoff	58.13	1	727	192,175				PRDA-A-IMPERVIOUS
5	Combine	77.28	1	727	245,140	3, 4			PRDA-A To Basin
6	Reservoir	18.41	1	743	191,517	5	240.36	135,583	SWM-1
8	SCS Runoff	1.879	1	727	5,196				PRDA A Bypass
10	Combine	18.89	1	743	196,713	6, 8,			PRDA Total
Нус	drologic Calc	ulations.g	Ipw		Return F	Period: 100) Year	Thursday,	10 / 15 / 2020

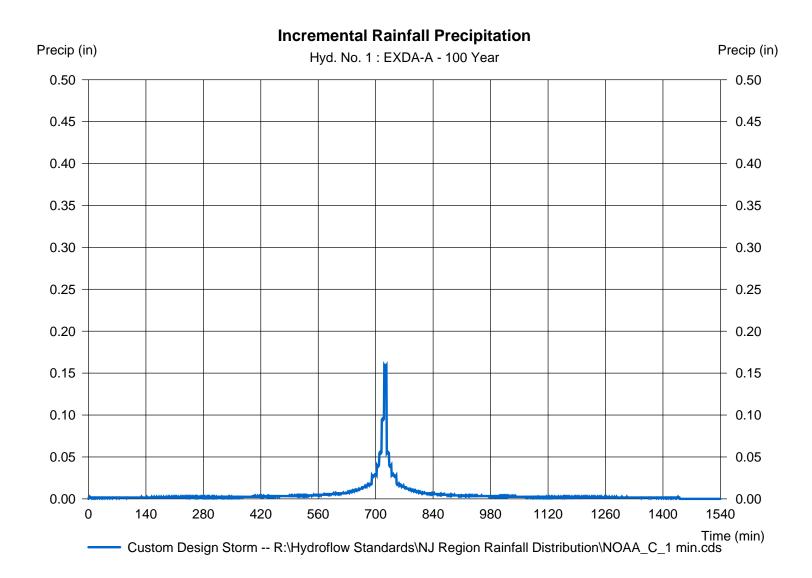

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 1

EXDA-A

Hydrograph type	= SCS Runoff	Peak discharge	= 23.84 cfs
Storm frequency	= 100 yrs	Time to peak	= 737 min
Time interval	= 1 min	Hyd. volume	= 105,387 cuft
Drainage area	= 9.960 ac	Curve number	= 55
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 21.00 min
Total precip.	= 8.15 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ F	Regloarp Rataroftad Ir Distribut	tiona∖M484AA_C_1 min.cds

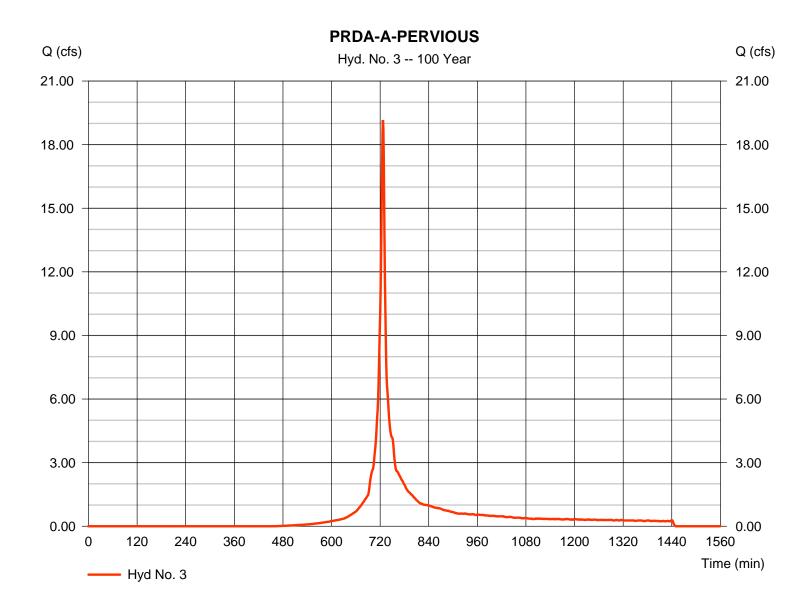

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 1

EXDA-A

Storm Frequency	= 100 yrs	Time interval	= 1 min
Total precip.	= 8.1500 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Star	ndards\NJ Region Rainfall	Distribution\NOAA_C_1 min.cds

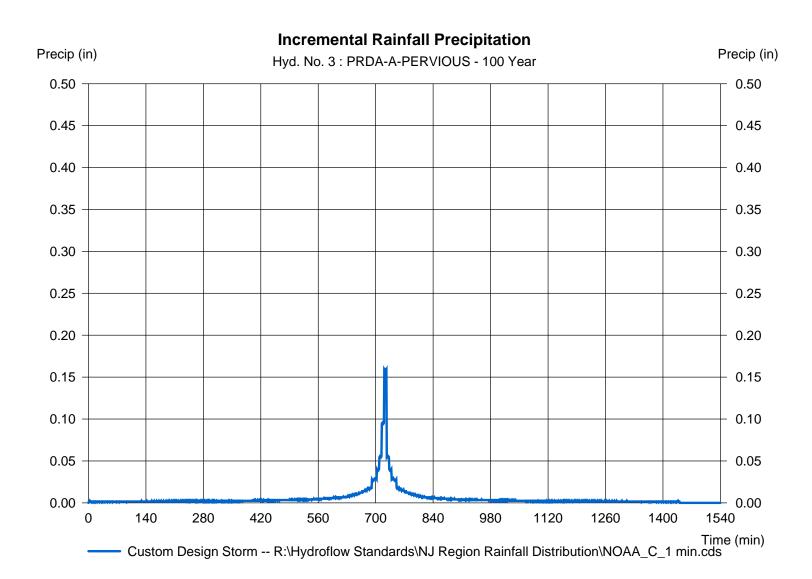

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 3

PRDA-A-PERVIOUS

Hydrograph type	= SCS Runoff	Peak discharge	= 19.15 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 52,964 cuft
Drainage area	= 3.160 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 8.15 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ F	Re Ghoan p Ratan of taol I Distribu	tiona\M484AA_C_1 min.cds

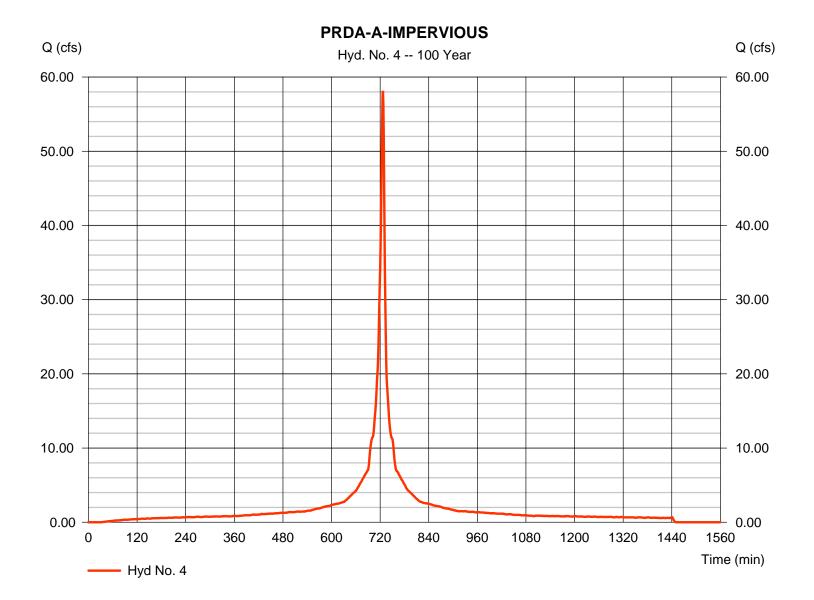

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 3

PRDA-A-PERVIOUS

Storm Frequency	= 100 yrs	Time interval	= 1 min
Total precip.	= 8.1500 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Star	ndards\NJ Region Rainfall	Distribution\NOAA_C_1 min.cds

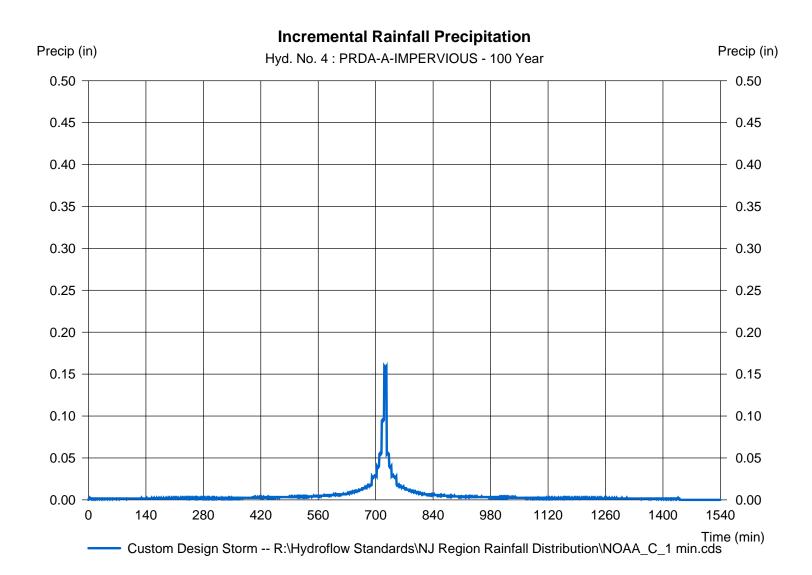


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 4

PRDA-A-IMPERVIOUS

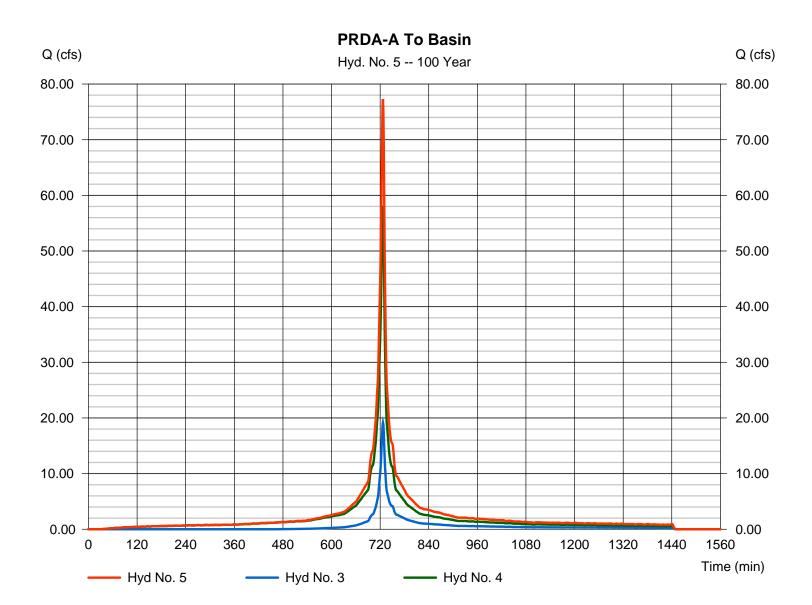
Hydrograph type	= SCS Runoff	Peak discharge	= 58.13 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 192,175 cuft
Drainage area	= 6.490 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 8.15 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ F	Regloarp Ratarofadt Distribut	tiona∖N484AA_C_1 min.cds


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 4

PRDA-A-IMPERVIOUS


Storm Frequency	= 100 yrs	Time interval	= 1 min
Total precip.	= 8.1500 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standard	s\NJ Region Rainfall Di	stribution\NOAA_C_1 min.cds

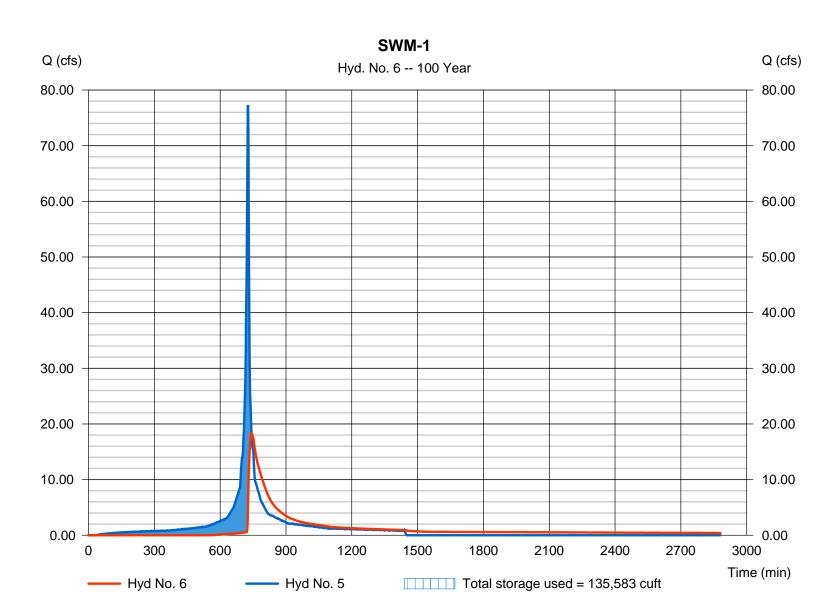
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 5

PRDA-A To Basin

Thursday, 10 / 15 / 2020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

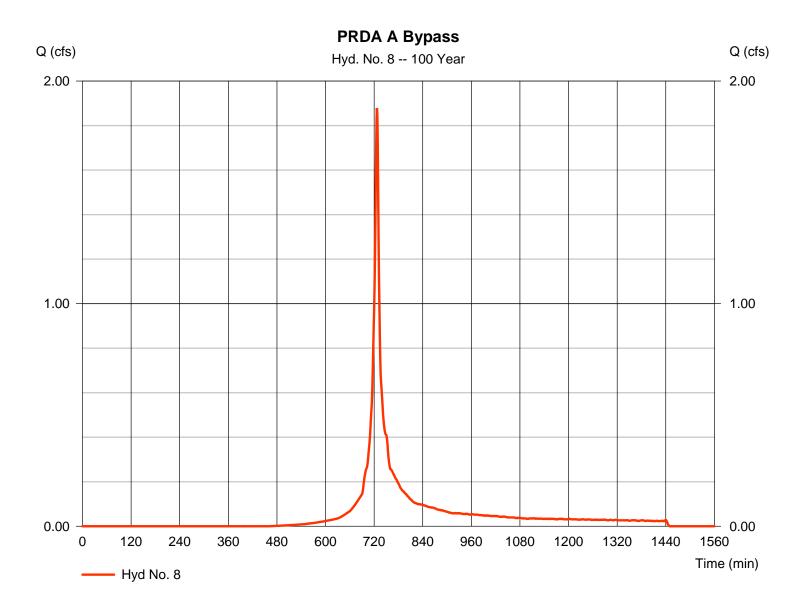

Thursday, 10 / 15 / 2020

Hyd. No. 6

SWM-1

Hydrograph type	= Reservoir	Peak discharge	= 18.41 cfs
Storm frequency	= 100 yrs	Time to peak	= 743 min
Time interval	= 1 min	Hyd. volume	= 191,517 cuft
Inflow hyd. No.	= 5 - PRDA-A To Basin	Max. Elevation	= 240.36 ft
Reservoir name	= BIORETENTION BASIN	Max. Storage	= 135,583 cuft

Storage Indication method used.

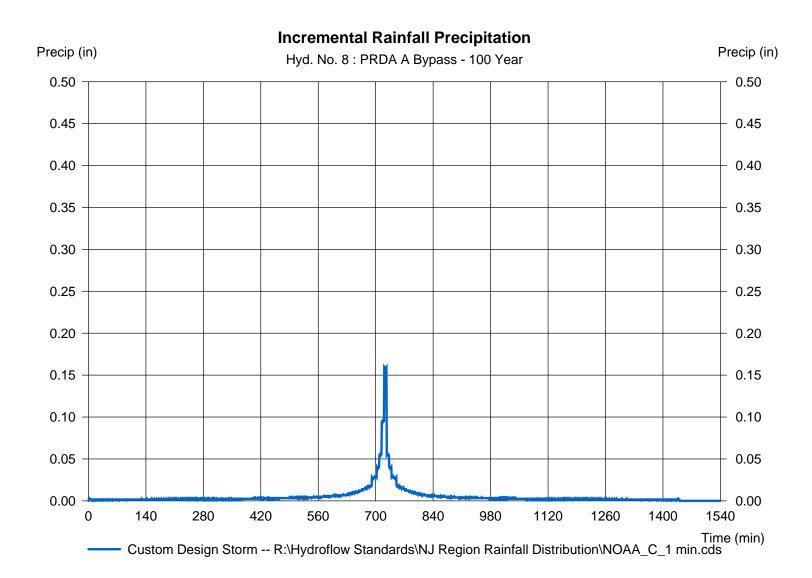

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 8

PRDA A Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 1.879 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 5,196 cuft
Drainage area	= 0.310 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 8.15 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ F	Regitoarp Bataroftadit Distribu	tiona\M84AA_C_1 min.cds

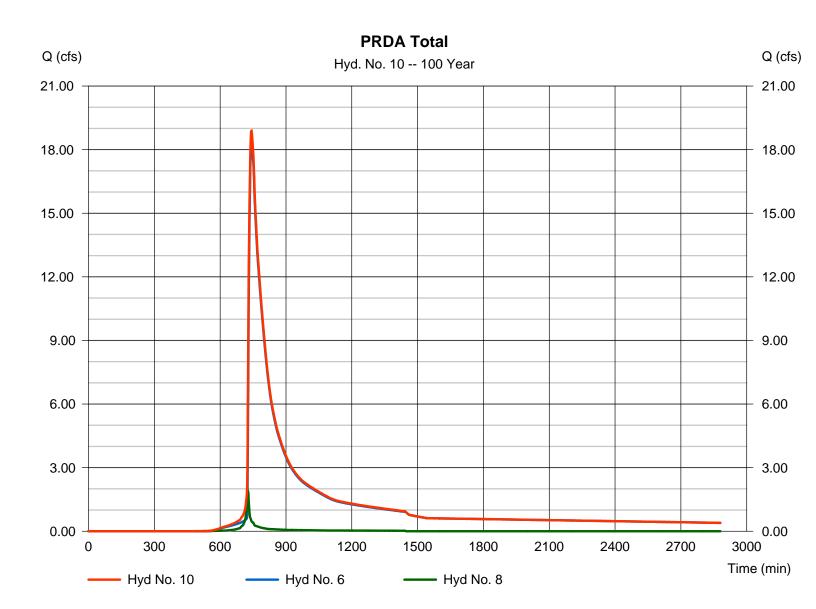

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 8

PRDA A Bypass

Storm Frequency	= 100 yrs	Time interval	= 1 min
Total precip.	= 8.1500 in	Distribution	= Custom
Storm duration			Distribution\NOAA_C_1 min.cds


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 10

PRDA Total

Time interval= 1 minHyd. volume= 196,713 cuftInflow hyds.= 6, 8Contrib. drain. area= 0.310 ac			,	,
---	--	--	---	---

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

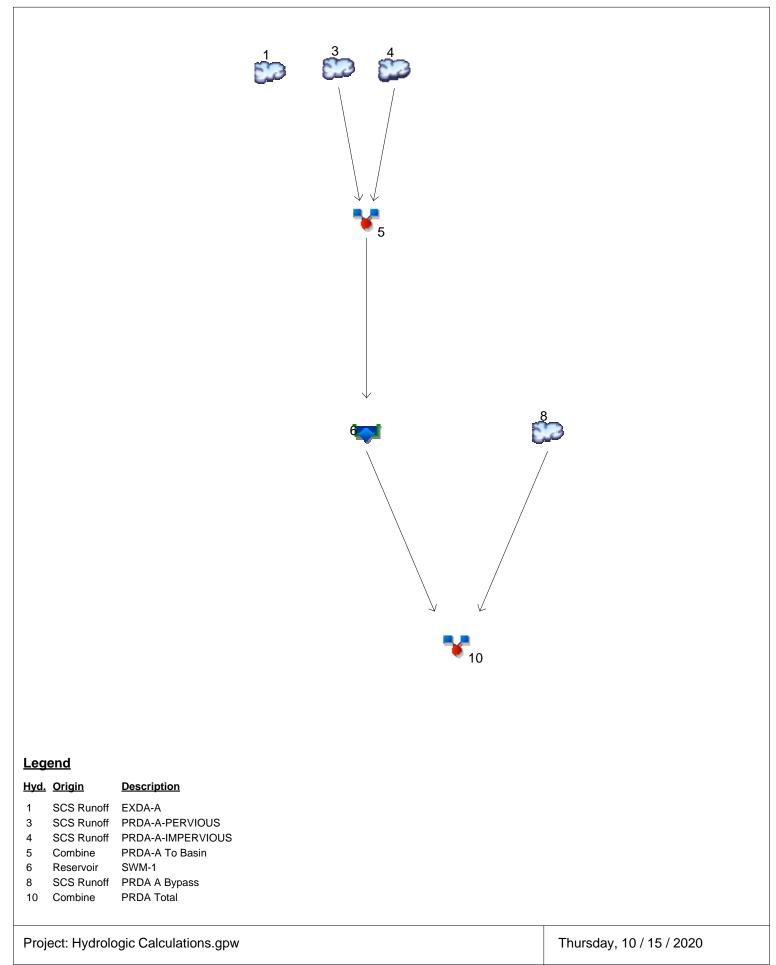
Return Period	Intensity-D	(FHA)		
(Yrs)	В	D	E	(N/A)
1	0.0000	0.0000	0.0000	
2	69.8703	13.1000	0.8658	
3	0.0000	0.0000	0.0000	
5	79.2597	14.6000	0.8369	
10	88.2351	15.5000	0.8279	
25	102.6072	16.5000	0.8217	
50	114.8193	17.2000	0.8199	
100	127.1596	17.8000	0.8186	
1			1	1

File name: SampleFHA.idf

Intensity = B / (Tc + D)^E

Return					Intens	ity Values	(in/hr)					
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.69	4.61	3.89	3.38	2.99	2.69	2.44	2.24	2.07	1.93	1.81	1.70
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.57	5.43	4.65	4.08	3.65	3.30	3.02	2.79	2.59	2.42	2.27	2.15
10	7.24	6.04	5.21	4.59	4.12	3.74	3.43	3.17	2.95	2.77	2.60	2.46
25	8.25	6.95	6.03	5.34	4.80	4.38	4.02	3.73	3.48	3.26	3.07	2.91
50	9.04	7.65	6.66	5.92	5.34	4.87	4.49	4.16	3.88	3.65	3.44	3.25
100	9.83	8.36	7.30	6.50	5.87	5.36	4.94	4.59	4.29	4.03	3.80	3.60

Tc = time in minutes. Values may exceed 60.


019\011910	9 (01) - Green Care F	arms - Hillsborough\Documents\Reports\SWM\Hydraflow\REsources\Hillsborough.pc	р

	Rainfall Precipitation Table (in)									
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
SCS 24-hour	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Custom	0.00	3.43	0.00	0.00	5.08	0.00	0.00	8.15		

Watershed Model Schematic

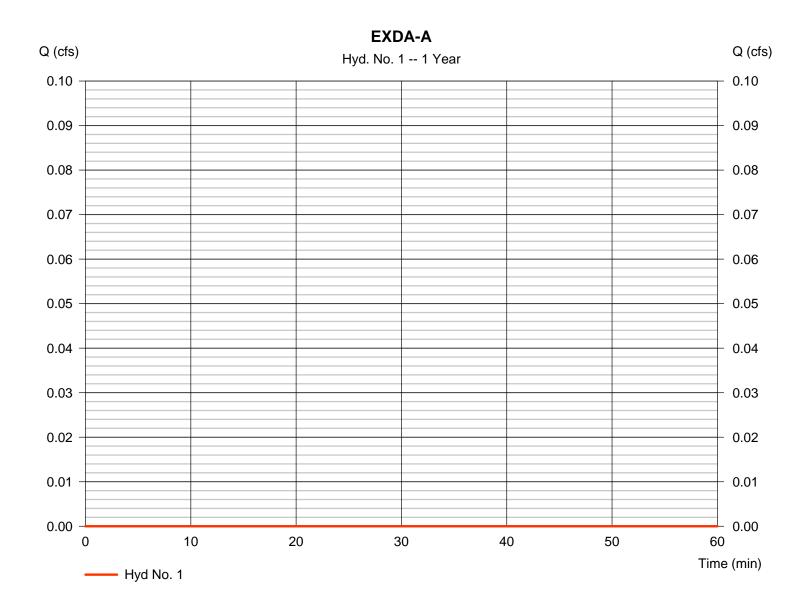
Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type	Inflow hyd(s)		Peak Outflow (cfs)						Hydrograph Description	
	(origin)		1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	•
1	SCS Runoff		0.000								EXDA-A
3	SCS Runoff		0.121								PRDA-A-PERVIOUS
4	SCS Runoff		19.25								PRDA-A-IMPERVIOUS
5	Combine	3, 4	19.25								PRDA-A To Basin
6	Reservoir	5	0.016								SWM-1
8	SCS Runoff		0.012								PRDA A Bypass
10	Combine	6, 8,	0.019								PRDA Total

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.000	1	n/a	0				EXDA-A
3	SCS Runoff	0.121	1	92	301				PRDA-A-PERVIOUS
4	SCS Runoff	19.25	1	65	25,135				PRDA-A-IMPERVIOUS
5	Combine	19.25	1	65	25,436	3, 4			PRDA-A To Basin
6	Reservoir	0.016	1	129	1,424	5	236.97	25,416	SWM-1
8	SCS Runoff	0.012	1	92	30				PRDA A Bypass
10	Combine	0.019	1	121	1,454	6, 8,			PRDA Total
Hvr	drologic Calc	ulations o	wai	1	Return	Period: 1 Y	ear	Thursday	10 / 15 / 2020

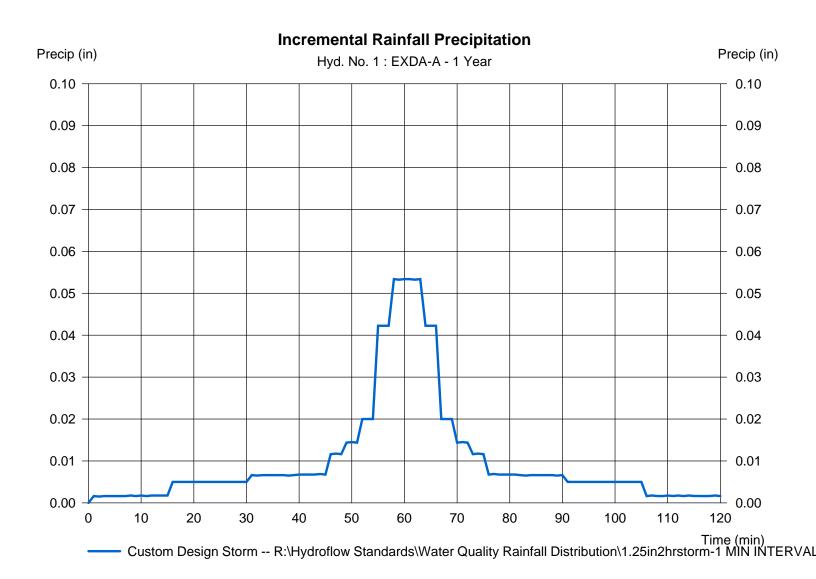

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 1

EXDA-A

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 1 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Drainage area	= 9.960 ac	Curve number	= 55
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 21.00 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Stand:	ards\Water Schapplety far Racion fall Distr	ribution&4.25in2hrstorm-1 MIN

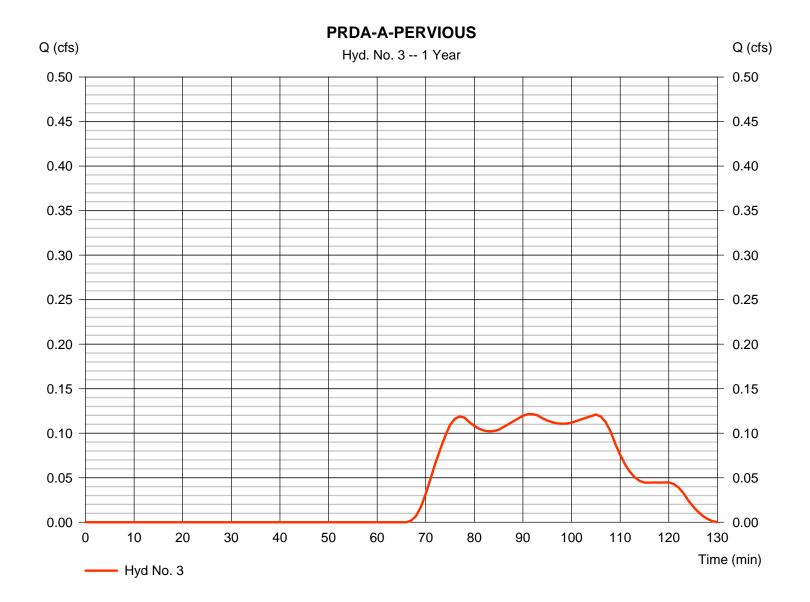

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 1

EXDA-A

Storm Frequency	= 1 yrs	Time interval	= 1 min
Total precip.	= 1.2500 in	Distribution	= Custom
Storm duration			I Distribution\1.25in2hrstorm-1 MII

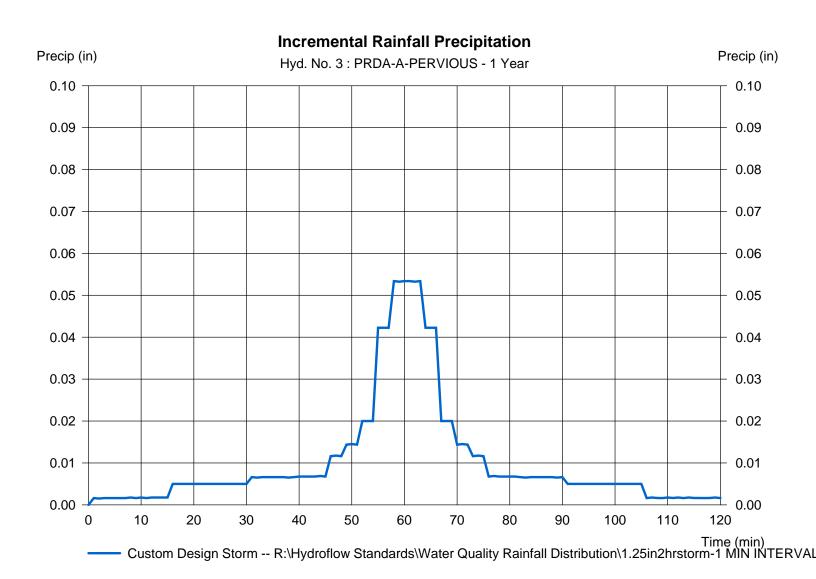

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 3

PRDA-A-PERVIOUS

Hydrograph type	= SCS Runoff	Peak discharge	= 0.121 cfs
Storm frequency	= 1 yrs	Time to peak	= 92 min
Time interval	= 1 min	Hyd. volume	= 301 cuft
Drainage area	= 3.160 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standa	rds\WaterSchapplietyfaRationfall Dist	rib⊯tiøko84.25in2hrstorm-1 MIN

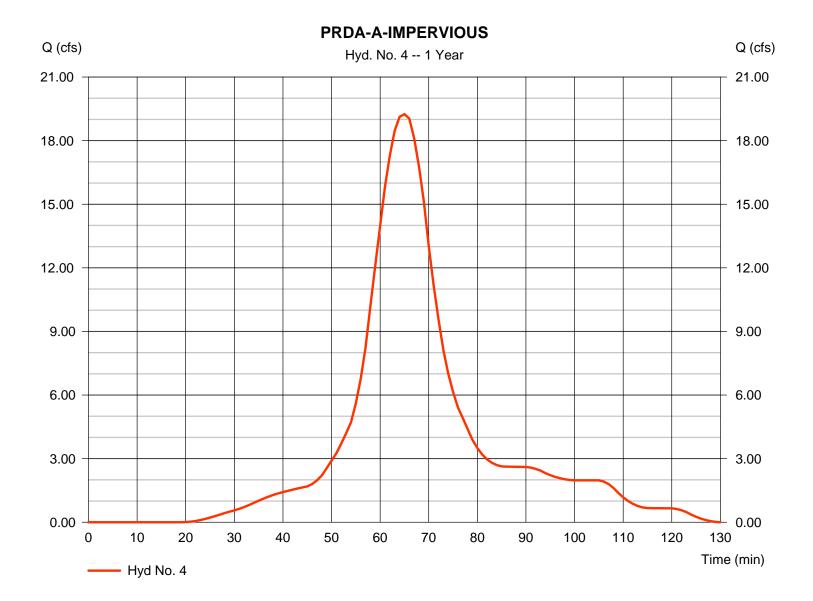

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 3

PRDA-A-PERVIOUS

Storm Frequency	= 1 yrs	Time interval	= 1 min
Total precip.	= 1.2500 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standard	s\Water Quality Rainfal	I Distribution\1.25in2hrstorm-1 MI

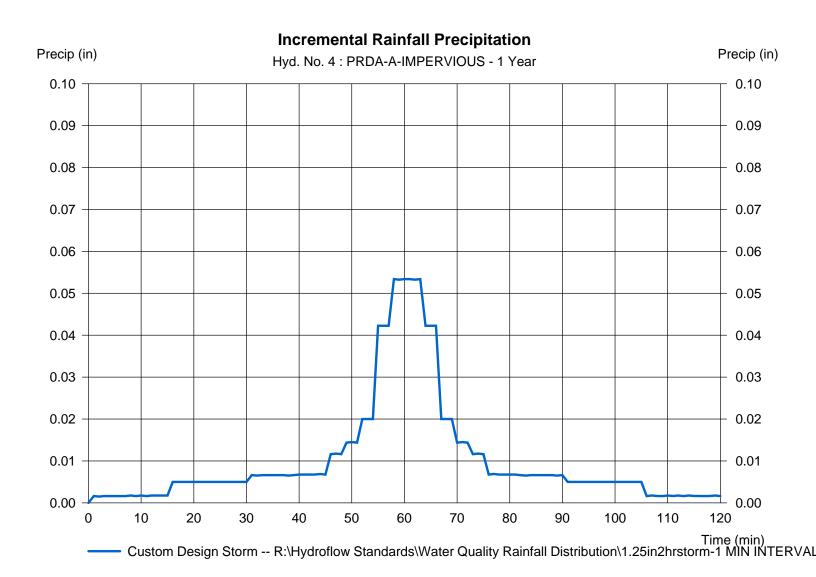

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 4

PRDA-A-IMPERVIOUS

Hydrograph type	= SCS Runoff	Peak discharge	= 19.25 cfs
Storm frequency	= 1 yrs	Time to peak	= 65 min
Time interval	= 1 min	Hyd. volume	= 25,135 cuft
Drainage area	= 6.490 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Stand	lards\WaterSchapletyfaRationfall Distr	rib⊯tio%a4.25in2hrstorm-1 MIN

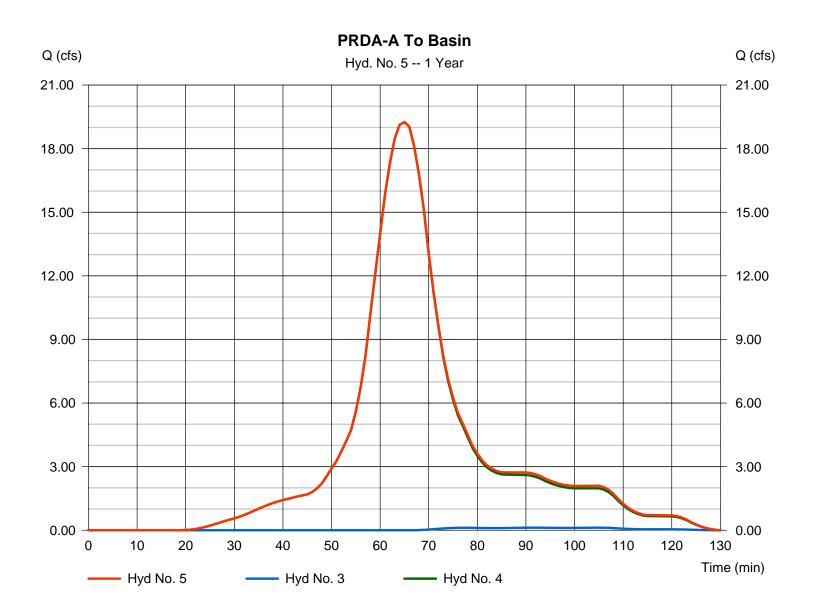

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 4

PRDA-A-IMPERVIOUS	5
-------------------	---

Storm Frequency	= 1 yrs	Time interval	= 1 min
Total precip.	= 1.2500 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards	s\Water Quality Rainfal	I Distribution\1.25in2hrstorm-1 MI


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

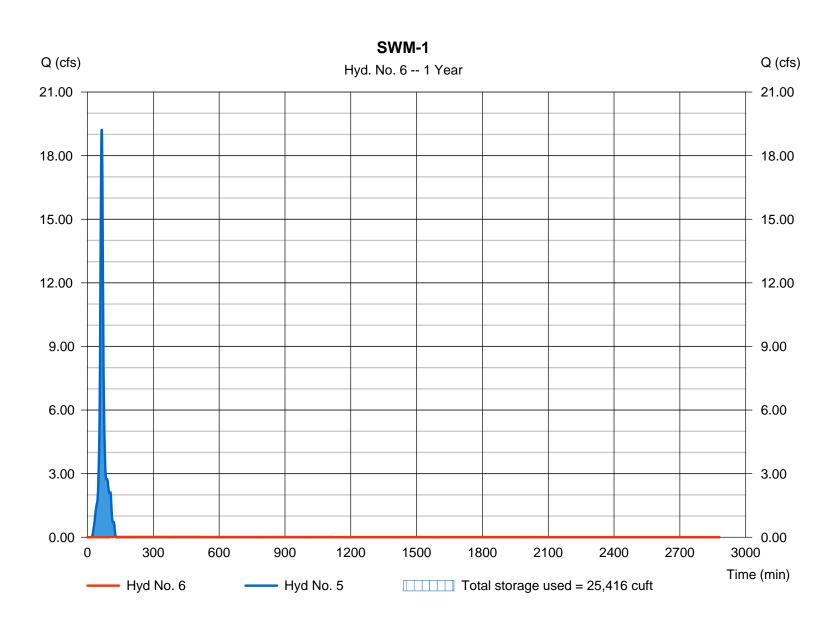
Thursday, 10 / 15 / 2020

Hyd. No. 5

PRDA-A To Basin

Hydrograph type	= Combine	Peak discharge	 = 19.25 cfs = 65 min = 25,436 cuft = 9.650 ac
Storm frequency	= 1 yrs	Time to peak	
Time interval	= 1 min	Hyd. volume	
Inflow hyds.	= 3, 4	Contrib. drain. area	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020


Thursday, 10 / 15 / 2020

Hyd. No. 6

SWM-1

Hydrograph type	= Reservoir	Peak discharge	= 0.016 cfs
Storm frequency	= 1 yrs	Time to peak	= 129 min
Time interval	= 1 min	Hyd. volume	= 1,424 cuft
Inflow hyd. No.	= 5 - PRDA-A To Basin	Max. Elevation	= 236.97 ft
Reservoir name	= BIORETENTION BASIN	Max. Storage	= 25,416 cuft

Storage Indication method used.

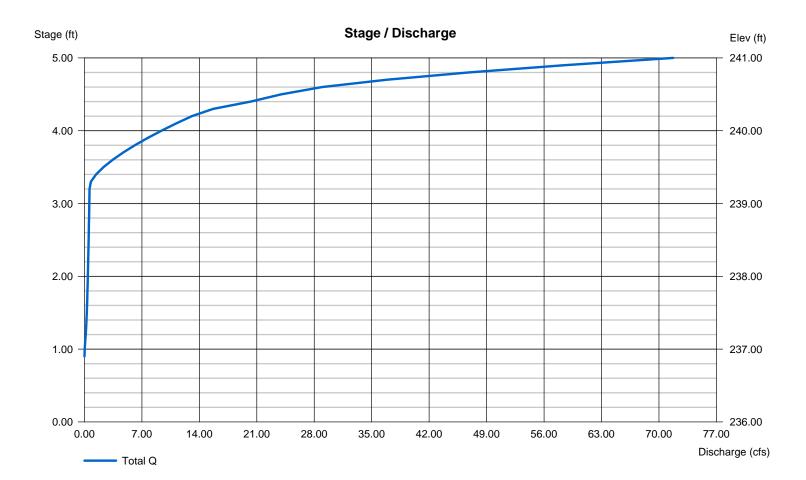
Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 1 - BIORETENTION BASIN

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 236.00 ft


Stage / Storage Table

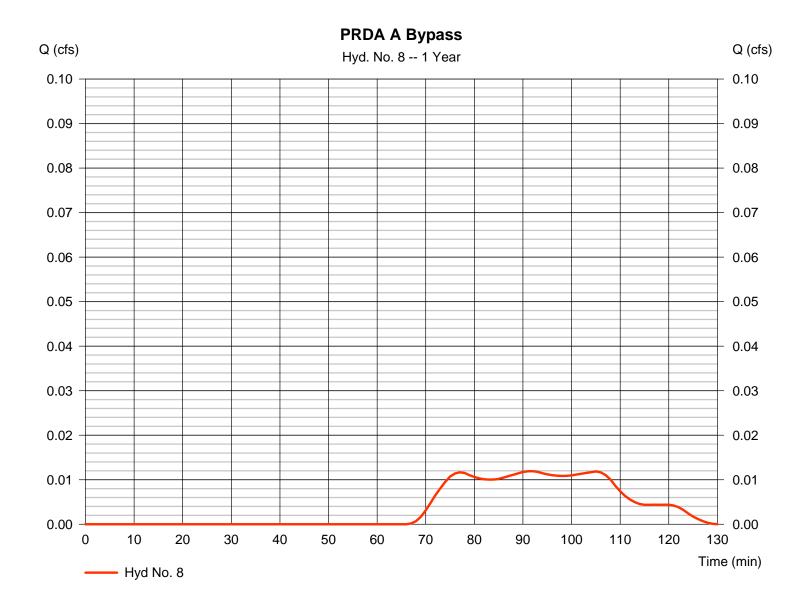
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	236.00	24,863	0	0
1.00	237.00	27,631	26,232	26,232
2.00	238.00	30,462	29,032	55,264
3.00	239.00	33,357	31,895	87,160
4.00	240.00	36,316	34,823	121,982
5.00	241.00	39,338	37,813	159,795

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	4.00	0.00	0.00	Crest Len (ft)	= 16.00	4.00	50.00	0.00
Span (in)	= 18.00	4.00	0.00	0.00	Crest El. (ft)	= 240.25	239.25	240.50	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	2.60	3.33
Invert El. (ft)	= 231.00	236.90	0.00	0.00	Weir Type	= 1	Rect	Broad	
Length (ft)	= 1.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.50	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

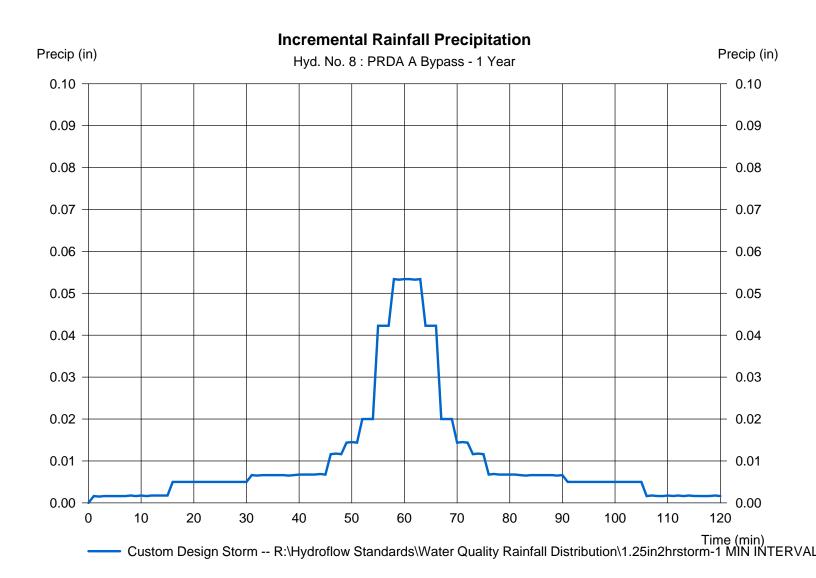

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 8

PRDA A Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.012 cfs
Storm frequency	= 1 yrs	Time to peak	= 92 min
Time interval	= 1 min	Hyd. volume	= 30 cuft
Drainage area	= 0.310 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standa	ards\Water Schamplety fa Ration fall Dist	rib⊯ti ølð 4.25in2hrstorm-1 MIN

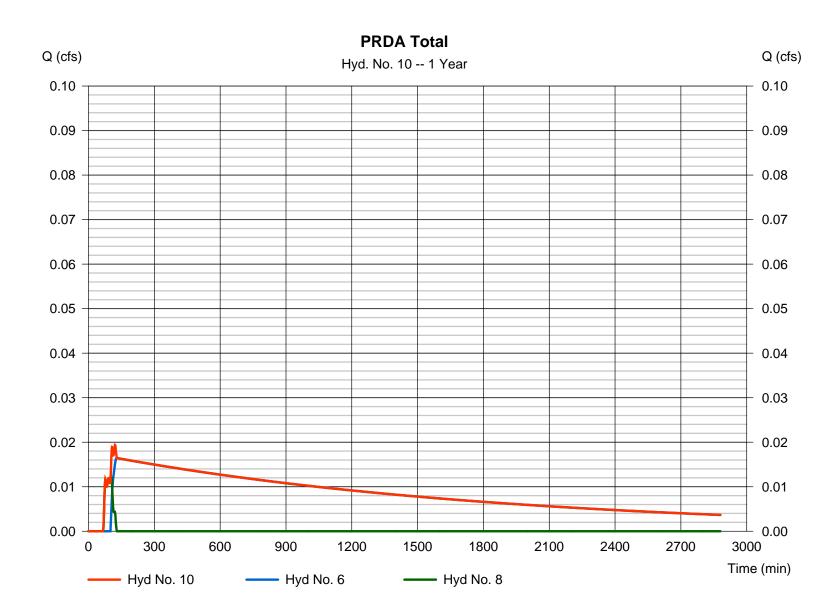

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 8

PRDA A Bypass

Storm Frequency	= 1 yrs	Time interval	= 1 min
Total precip.	= 1.2500 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Sta	ndards\Water Quality Rain	fall Distribution\1.25in2hrstorm-1 MI


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 10

PRDA Total

Hydrograph type	= Combine	Peak discharge	= 0.019 cfs
Storm frequency	= 1 yrs	Time to peak	= 121 min
Time interval	= 1 min	Hyd. volume	= 1,454 cuft
Inflow hyds.	= 6, 8	Contrib. drain. area	= 0.310 ac

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

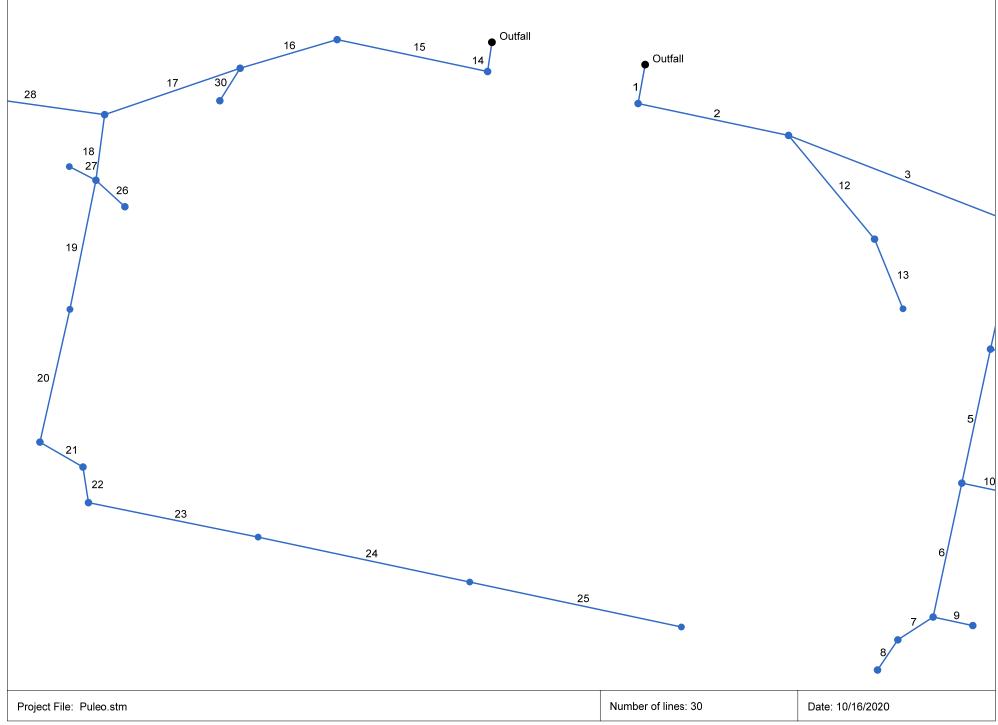
Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)					
(Yrs)	В	D	E	(N/A)		
1	0.0000	0.0000	0.0000			
2	69.8703	13.1000	0.8658			
3	0.0000	0.0000	0.0000			
5	79.2597	14.6000	0.8369			
10	88.2351	15.5000	0.8279			
25	102.6072	16.5000	0.8217			
50	114.8193	17.2000	0.8199			
100	127.1596	17.8000	0.8186			
1			1	1		

File name: SampleFHA.idf

Intensity = B / (Tc + D)^E

Return					Intens	ity Values	(in/hr)					
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.69	4.61	3.89	3.38	2.99	2.69	2.44	2.24	2.07	1.93	1.81	1.70
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.57	5.43	4.65	4.08	3.65	3.30	3.02	2.79	2.59	2.42	2.27	2.15
10	7.24	6.04	5.21	4.59	4.12	3.74	3.43	3.17	2.95	2.77	2.60	2.46
25	8.25	6.95	6.03	5.34	4.80	4.38	4.02	3.73	3.48	3.26	3.07	2.91
50	9.04	7.65	6.66	5.92	5.34	4.87	4.49	4.16	3.88	3.65	3.44	3.25
100	9.83	8.36	7.30	6.50	5.87	5.36	4.94	4.59	4.29	4.03	3.80	3.60

Tc = time in minutes. Values may exceed 60.


019\011910	9 (01) - Green Care F	arms - Hillsborough\Documents\Reports\SWM\Hydraflow\REsources\Hillsborough.pcp	

		R	ainfall P	recipitat	ion Tabl	e (in)		
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	1.25	3.43	0.00	0.00	5.08	6.19	0.00	8.15

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Summary Report

₋ine No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe - (30)	8.13	24	Cir	29.355	236.00	238.40	8.176	237.99	239.41	n/a	239.41 j	End	Manhole
2	Pipe - (17)	6.71	18	Cir	113.750	238.20	244.80	5.802	239.41	245.80	n/a	245.80 j	1	Manhole
3	Pipe - (19)	2.41	18	Cir	182.210	245.00	247.90	1.592	249.13*	252.03*	n/a	252.90	2	Manhole
4	Pipe - (20)	2.25	18	Cir	94.713	252.20	258.60	6.757	253.43	260.09	n/a	260.09	3	Manhole
5	Pipe - (38)	1.75	15	Cir	101.703	258.80	265.40	6.490	260.09	266.65	n/a	269.44	4	Manhole
6	Pipe - (21)	1.29	15	Cir	101.703	265.60	272.00	6.293	269.44*	275.85*	n/a	278.55	5	Manhole
7	Pipe - (22)	0.70	15	Cir	31.113	272.20	273.20	3.214	278.55*	279.56*	n/a	280.18	6	Manhole
8	Pipe - (23)	0.61	15	Cir	26.926	273.40	274.00	2.228	280.18*	280.78*	n/a	281.74	7	Manhole
9	Pipe - (25)	0.61	15	Cir	30.000	272.30	273.40	3.667	278.55*	279.66*	n/a	281.23	6	Manhole
10	Pipe - (37)	0.30	15	Cir	30.000	265.70	266.80	3.667	269.44*	270.54*	n/a	272.12	5	Manhole
11	Pipe - (24)	0.30	15	Cir	30.000	258.90	260.00	3.667	260.09	261.22	n/a	261.22	4	Manhole
12	Pipe - (18)	3.24	15	Cir	99.863	245.20	247.70	2.503	249.13*	251.63*	n/a	252.01	2	Manhole
13	Pipe - (36)	3.21	12	Cir	55.780	248.00	250.00	3.586	252.01*	254.01*	n/a	255.35	12	Manhole
14	Pipe - (44)	22.34	24	Cir	22.035	236.00	238.10	9.530	237.99	240.09	n/a	240.09	End	Manhole
15	Pipe - (15)	20.72	18	Cir	113.750	238.30	245.20	6.066	240.09*	247.00*	n/a	248.76	14	Manhole
16	Pipe - (14)	19.34	18	Cir	74.774	245.40	246.60	1.605	248.76*	249.96*	n/a	250.59	15	Manhole
17	Pipe - (12)	19.10	18	Cir	106.000	246.80	250.40	3.396	250.59*	254.19*	n/a	255.89	16	Manhole
18	Pipe - (10)	20.79	18	Cir	49.115	252.80	255.50	5.497	255.89*	258.59*	n/a	261.61	17	Manhole
19	Pipe - (42)	13.43	18	Cir	97.779	255.70	258.30	2.659	261.61*	264.21*	n/a	264.43	18	Manhole
20	Pipe - (5)	12.99	18	Cir	101.007	258.50	260.60	2.079	264.43*	266.53*	n/a	267.62	19	Manhole
21	Pipe - (4)	11.63	15	Cir	36.841	260.80	261.80	2.714	267.62*	268.62*	n/a	269.57	20	Manhole
22	Pipe - (3)	10.82	15	Cir	26.744	262.00	262.80	2.991	269.57*	270.37*	n/a	271.60	21	Manhole
23	Pipe - (41)	9.81	15	Cir	128.005	263.00	265.20	1.719	271.60*	273.80*	n/a	273.91	22	Manhole
24	Pipe - (40)	6.27	15	Cir	160.000	265.40	267.80	1.500	273.91*	276.31*	n/a	276.40	23	Manhole
Project	File: Puleo.stm								Number o	f lines: 30		Ru	n Date: 10/1	6/2020

NOTES: Return period = 25 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	Pipe - (39)	2.72	15	Cir	160.000	268.00	270.50	1.563	276.40*	278.91*	n/a	279.58	24	Manhole
26	Pipe - (6)	0.30	15	Cir	29.038	255.80	257.60	6.199	261.61*	263.41*	n/a	266.08	18	Manhole
27	Pipe - (43)	1.94	12	Cir	22.158	255.80	256.80	4.513	261.61*	262.61*	n/a	264.30	18	Manhole
28	Pipe - (11)	0.56	15	Cir	120.649	250.60	253.10	2.072	255.89*	258.39*	n/a	259.28	17	Manhole
29	Pipe - (7)	0.30	15	Cir	26.290	253.30	254.00	2.663	259.28*	259.98*	n/a	261.13	28	Manhole
30	Pipe - (13)	0.12	15	Cir	28.446	248.70	249.40	2.461	250.59*	251.29*	n/a	252.35	16	Manhole
Projec	t File: Puleo.stm								Number o	f lines: 30		Run	Date: 10/1	6/2020
NOTE	S: Return period = 25 Yrs. ; *\$	Surcharged (HG	L above crowr). ; j - Line	contains h	nyd. jump.								

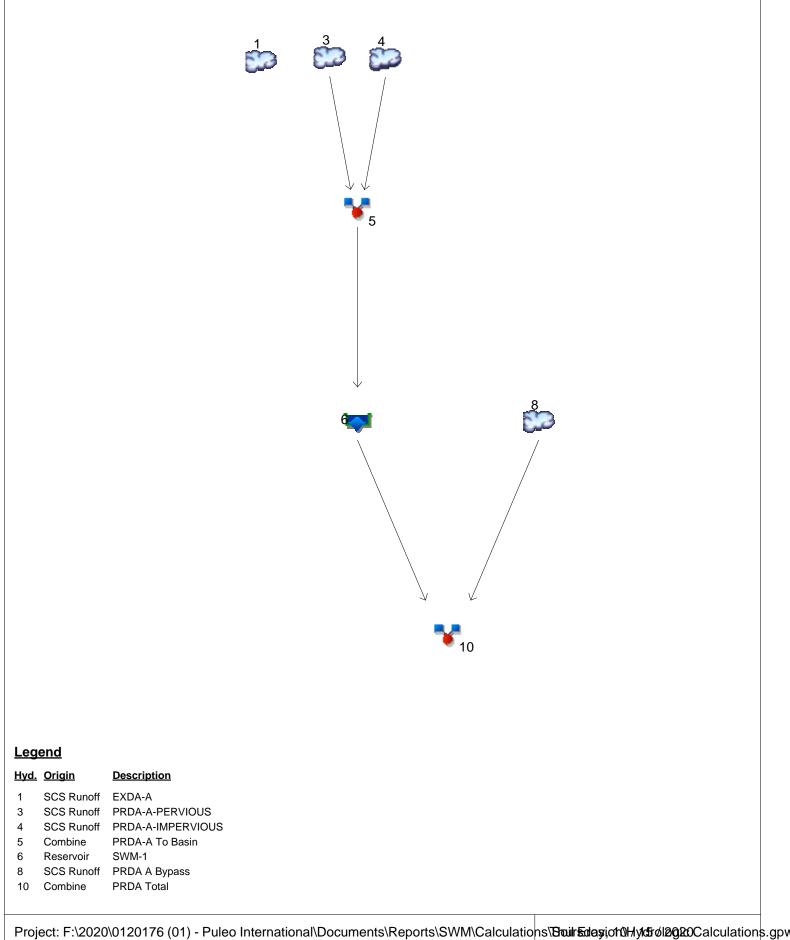
FL-DOT Report

ine o	To Line	Type of	n - Value	Len	Draina	ge Area		Time of	Time of	Inten (I)	Total CA	Add Q	Inlet elev	Ele	v of HGL		Rise	HGL	ADD		Date: 10/16/2020
		struc	, and o			C1 = 0.2 C2 = 0.5		conc	Flow in	(.,		∽ Total		Ele	v of Crown		Span	Pipe	Full F	low	Frequency: 25 yrs
						C3 = 0.9	Ð		sect			Flow		Ele	v of Invert						Proj: Puleo.stm
				(ft)	Incre- ment (ac)	Sub- Total (ac)	Sum CA	(min)	(min)	(in/hr)		Q (cfs)	(ft)	Up (ft)	Down (ft)	Fall (ft)	Size (in)	Slope (%)	Vel (ft/s)	Cap (cfs)	Line description
	End	МН	0.013	29.355	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	13.90	0.16	5.07	1.60	0.00 8.13	251.32	239.41 240.40 238.40	237.99 238.00 236.00	1.42	24 24 Cir	4.85 8.18	3.84 20.59	8.13 64.67	Pipe - (30)
	1	МН	0.013	113.75	0 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	13.46	0.43	5.14	1.31	0.00 6.71	251.32	245.80 246.30 244.80	239.41 239.70 238.20	6.39 6.60	18 18 Cir	5.62 5.80	4.86 14.31	6.71 25.30	Pipe - (17)
	2	МН	0.013	182.21	0 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	11.50	1.96	5.47	0.44	0.00 2.41	259.34	252.03 249.40 247.90	249.13 246.50 245.00	2.90 2.90	18 18 Cir	1.59 1.59	7.50 0.00	2.41 0.00	Pipe - (19)
	3	МН	0.013	94.713	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	10.39	1.11	5.68	0.40	0.00 2.25	264.50	260.09 260.10 258.60	253.43 253.70 252.20	6.66 6.40	18 18 Cir	7.03 6.76	16.53 0.00	2.25 0.00	Pipe - (20)
5	4	МН	0.013	101.70	3 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	9.31	1.08	5.90	0.30	0.00 1.75	271.11	266.65 266.65 265.40	260.09 260.05 258.80	6.56 6.60	15 15 Cir	6.45 6.49	13.41 0.00	1.75 0.00	Pipe - (38)
i	5	МН	0.013	101.70	3 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	7.79	1.52	6.24	0.21	0.00 1.29	277.72	275.85 273.25 272.00	269.44 266.85 265.60	6.40 6.40	15 15 Cir	6.30 6.29	13.20 0.00	1.29 0.00	Pipe - (21)
	6	МН	0.013	31.113	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	6.91	0.88	6.47	0.11	0.00 0.70	278.92	279.56 274.45 273.20	278.55 273.45 272.20	1.00 1.00	15 15 Cir	3.22 3.21	9.43 0.00	0.70 0.00	Pipe - (22)
	7	МН	0.013	26.926	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	6.00	0.91	6.72	0.09	0.00 0.61	279.49	280.78 275.25 274.00	280.18 274.65 273.40	0.60 0.60	15 15 Cir	2.23 2.23	7.86 0.00	0.61 0.00	Pipe - (23)
	6	МН	0.013	30.000	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	6.00	1.01	6.72	0.09	0.00 0.61	277.72	279.66 274.65 273.40	278.55 273.55 272.30	1.10 1.10	15 15 Cir	3.67 3.67	10.08 0.00	0.61 0.00	Pipe - (25)
0	5	МН	0.013	30.000	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	6.00	2.03	6.72	0.05	0.00 0.30	271.11	270.54 268.05 266.80	269.44 266.95 265.70	1.10 1.10	15 15 Cir	3.67 3.67	10.08 0.00	0.30 0.00	Pipe - (37)
	ES: Inte	nsity = 54	 I.48 / (Inl	et time +	- 11.00)	^ 0.74(in/hr);	Time of f	low in s	ection is	based c	n full flov	N.								Project File: Puleo.s

FL-DOT Report

ine o	To Line	Type of	n - Value	Len	Draina	ige Area		Time of	Time of	Inten (I)	Total CA	Add Q	Inlet elev	Ele	v of HGL		Rise	HGL	ADD		Date: 10/16/2020
0	Line	struc	Value			C1 = 0.2 C2 = 0.4		conc	Flow	(.)		⊂ Total		Ele	v of Crown		Span	Pipe	Full F	low	Frequency: 25 yrs
						C2 = 0.0 C3 = 0.0	9		sect			Flow		Ele	v of Invert						Proj: Puleo.stm
				(ft)	Incre- ment (ac)	Sub- Total (ac)	Sum CA	(min)	(min)	(in/hr)		Q (cfs)	(ft)	Up (ft)	Down (ft)	Fall (ft)	Size (in)	Slope (%)	Vel (ft/s)	Cap (cfs)	Line description
					(ac)			(1111)	(1111)				(11)	(11)	(11)		(11)	(70)	(105)		
1	4	МН	0.013	30.000	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	6.00	2.03	6.72	0.05	0.00 0.30	264.50	261.22 261.25 260.00	260.09 260.15 258.90	1.13 1.10	15 15 Cir	3.76 3.67	10.20 0.00	0.30 0.00	Pipe - (24)
12	2	МН	0.013	99.863	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	6.23	0.63	6.66	0.49	0.00 3.24	254.23	251.63 248.95 247.70	249.13 246.45 245.20	2.50 2.50	15 15 Cir	2.50 2.50	8.33 0.00	3.24 0.00	Pipe - (18)
13	12	МН	0.012	55.780	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	6.00	0.23	6.72	0.48	0.00 3.21	255.86	254.01 251.00 250.00	252.01 249.00 248.00	2.00 2.00	12 12 Cir	3.59 3.59	9.30 0.00	3.21 0.00	Pipe - (36)
14	End	МН	0.013	22.035	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	12.30	0.05	5.33	4.19	0.00 22.34	251.32	240.09 240.10 238.10	237.99 238.00 236.00	2.10 2.10	24 24 Cir	9.55 9.53	22.23 0.00	22.34 0.00	Pipe - (44)
15	14	МН	0.013	113.75	0 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	12.14	0.16	5.35	3.87	0.00 20.72	251.32	247.00 246.70 245.20	240.09 239.80 238.30	6.90 6.90	18 18 Cir	6.07 6.07	14.64 0.00	20.72 0.00	Pipe - (15)
16	15	МН	0.013	74.774	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	12.04	0.11	5.37	3.60	0.00 19.34	253.31	249.96 248.10 246.60	248.76 246.90 245.40	1.20 1.20	18 18 Cir	1.61 1.60	7.53 0.00	19.34 0.00	Pipe - (14)
17	16	МН	0.013	106.00	0 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	11.88	0.15	5.40	3.54	0.00 19.10	261.31	254.19 251.90 250.40	250.59 248.30 246.80	3.60 3.60	18 18 Cir	3.40 3.40	10.95 0.00	19.10 0.00	Pipe - (12)
18	17	МН	0.013	49.115	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	8.56	0.07	6.06	3.43	0.00 20.79	263.89	258.59 257.00 255.50	255.89 254.30 252.80	2.70 2.70	18 18 Cir	5.50 5.50	13.93 0.00	20.79 0.00	Pipe - (10)
19	18	МН	0.013	97.779	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	8.34	0.22	6.11	2.20	0.00 13.43	268.80	264.21 259.80 258.30	261.61 257.20 255.70	2.60 2.60	18 18 Cir	2.66 2.66	9.69 0.00	13.43 0.00	Pipe - (42)
20	19	МН	0.013	101.00	07 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	8.10	0.24	6.17	2.11	0.00 12.99	270.36	266.53 262.10 260.60	264.43 260.00 258.50	2.10 2.10	18 18 Cir	2.08 2.08	8.57 0.00	12.99 0.00	Pipe - (5)

FL-DOT Report


ine o	To Line	Type of	n - Value	Len	Draina	ge Area		Time of	Time of	Inten (I)	Total CA	Add Q	Inlet elev	Ele	v of HGL		Rise	HGL	ADD		Date: 10/16/2020
-		struc				C1 = 0.2 C2 = 0.5		conc	Flow			Total		Ele	v of Crown		Span	Pipe	Full F	low	Frequency: 25 yrs
						C3 = 0.9	Ð		sect			Flow		Ele	v of Invert						Proj: Puleo.stm
				(ft)	Incre- ment (ac)	Sub- Total (ac)	Sum CA	(min)	(min)	(in/hr)		Q (cfs)	(ft)	Up (ft)	Down (ft)	Fall (ft)	Size (in)	Slope (%)	Vel (ft/s)	Cap (cfs)	Line description
:1	20	МН	0.013	36.841	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	8.04	0.07	6.19	1.88	0.00 11.63	271.09	268.62 263.05 261.80	267.62 262.05 260.80	1.00	15 15 Cir	2.72 2.71	8.67 0.00	11.63 0.00	Pipe - (4)
2	21	МН	0.013	26.744	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	7.98	0.05	6.20	1.75	0.00 10.82	270.55	270.37 264.05 262.80	269.57 263.25 262.00	0.80 0.80	15 15 Cir	2.99 2.99	9.10 0.00	10.82 0.00	Pipe - (3)
3	22	МН	0.013	128.00	5 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	7.72	0.27	6.26	1.57	0.00 9.81	270.93	273.80 266.45 265.20	271.60 264.25 263.00	2.20 2.20	15 15 Cir	1.72 1.72	6.90 0.00	9.81 0.00	Pipe - (41)
24	23	МН	0.013	160.00	0 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	7.20	0.52	6.39	0.98	0.00 6.27	273.44	276.31 269.05 267.80	273.91 266.65 265.40	2.40 2.40	15 15 Cir	1.50 1.50	6.45 0.00	6.27 0.00	Pipe - (40)
25	24	МН	0.013	160.00	0 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	6.00	1.20	6.72	0.41	0.00 2.72	275.95	278.91 271.75 270.50	276.40 269.25 268.00	2.50 2.50	15 15 Cir	1.56 1.56	6.58 0.00	2.72 0.00	Pipe - (39)
26	18	МН	0.013	29.038	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	6.00	1.96	6.72	0.05	0.00 0.30	265.13	263.41 258.85 257.60	261.61 257.05 255.80	1.80 1.80	15 15 Cir	6.20 6.20	13.10 0.00	0.30 0.00	Pipe - (6)
27	18	МН	0.012	22.158	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	6.00	0.15	6.72	0.29	0.00 1.94	0.60	262.61 257.80 256.80	261.61 256.80 255.80	1.00 1.00	12 12 Cir	4.52 4.51	10.44 0.00	1.94 0.00	Pipe - (43)
28	17	МН	0.013	120.64	9 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	7.78	4.10	6.25	0.09	0.00 0.56	258.50	258.39 254.35 253.10	255.89 251.85 250.60	2.50 2.50	15 15 Cir	2.07 2.07	7.58 0.00	0.56 0.00	Pipe - (11)
9	28	МН	0.013	26.290	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	6.00	1.78	6.72	0.05	0.00 0.30	259.00	259.98 255.25 254.00	259.28 254.55 253.30	0.70	15 15 Cir	2.67 2.66	8.59 0.00	0.30 0.00	Pipe - (7)
0	16	МН	0.013	28.446	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	6.00	4.81	6.72	0.02	0.00 0.12	254.96	251.29 250.65 249.40	250.59 249.95 248.70	0.70	15 15 Cir	2.46 2.46	8.26 0.00	0.12 0.00	Pipe - (13)
	S: Inter	nsity = 54	.48 / (Inl	et time +	- 11.00)	^ 0.74 (in/hr);	Time of f	flow in se	ection is	based o	n full flov	v.								Project File: Puleo.s

Storm Sewers v2020.00

Watershed Model Schematic

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

lyd. Io.	Hydrograph type	Inflow hyd(s)		1		Peak Ou	tflow (cfs))			Hydrograph Description
	(origin)	1190(3)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff							12.63			EXDA-A
3	SCS Runoff							12.28			PRDA-A-PERVIOUS
4	SCS Runoff							44.09			PRDA-A-IMPERVIOUS
5	Combine	3, 4						56.37			PRDA-A To Basin
6	Reservoir	5						5.667			SWM-1
8	SCS Runoff							1.205			PRDA A Bypass
10	Combine	6, 8,						5.809			PRDA Total

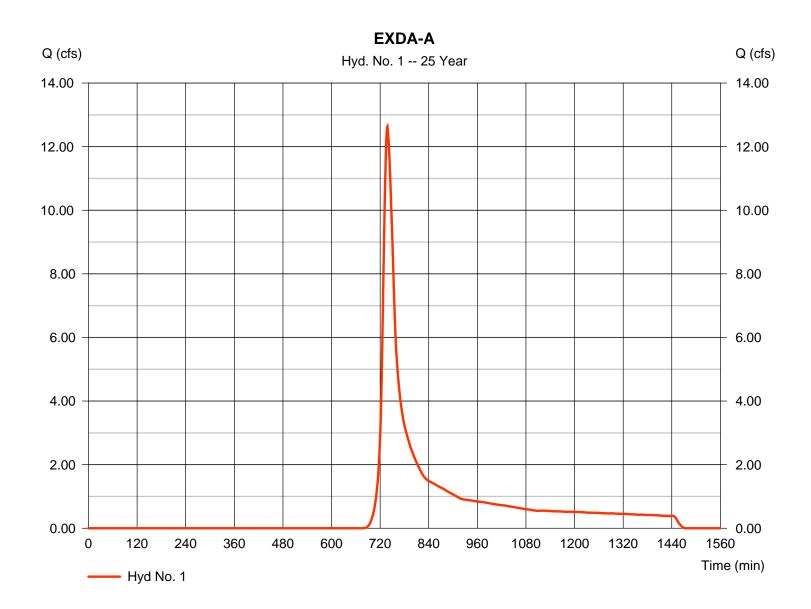
Proj. file: F:\2020\0120176 (01) - Puleo International\Documents\Reports\SWM\Calculations.gp

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	12.63	1	738	59,433				EXDA-A
3	SCS Runoff	12.28	1	727	33,852				PRDA-A-PERVIOUS
4	SCS Runoff	44.09	1	727	144,595				PRDA-A-IMPERVIOUS
5	Combine	56.37	1	727	178,447	3, 4			PRDA-A To Basin
6	Reservoir	5.667	1	775	125,541	5	239.77	113,891	SWM-1
8	SCS Runoff	1.205	1	727	3,321				PRDA A Bypass
10	Combine	5.809	1	775	128,862	6, 8,			PRDA Total

F:\2020\0120176 (01) - Puleo International\Doctements Repeater Store All Calculations.gpw

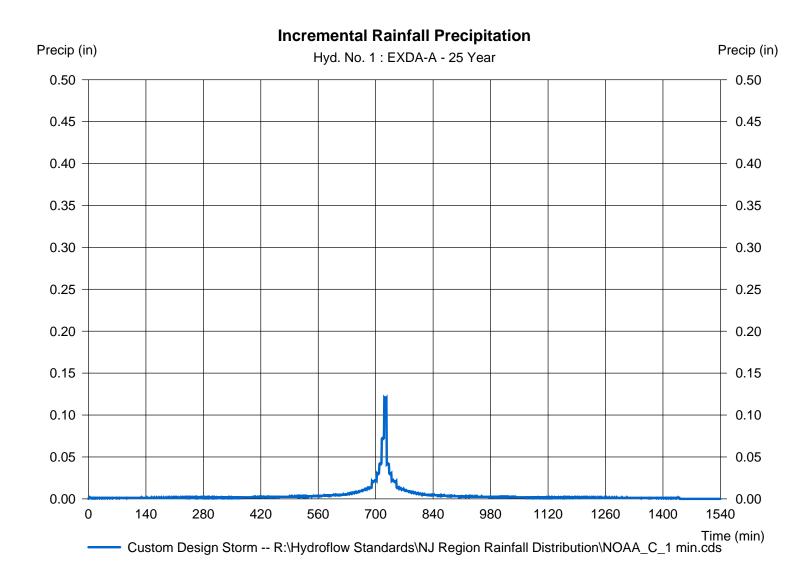

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 1

EXDA-A

Hydrograph type	= SCS Runoff	Peak discharge	= 12.63 cfs
Storm frequency	= 25 yrs	Time to peak	= 738 min
Time interval	= 1 min	Hyd. volume	= 59,433 cuft
Drainage area	= 9.960 ac	Curve number	= 55
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 21.00 min
Total precip.	= 6.19 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ F	Regloarp Ratarofadt Distribu	tion/M84A_C_1 min.cds

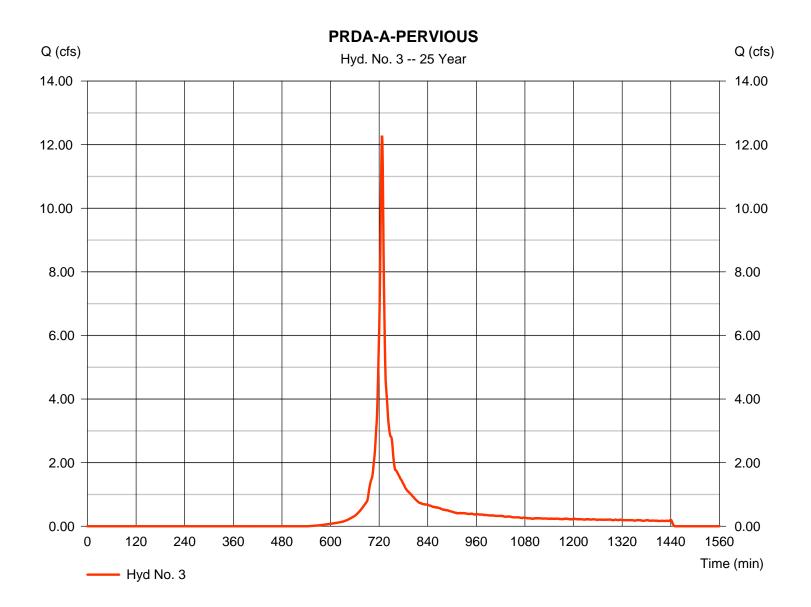

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 1

EXDA-A

Storm Frequency	= 25 yrs	Time interval	= 1 min
Total precip.	= 6.1900 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Sta	ndards\NJ Region Rainfall	Distribution\NOAA_C_1 min.cds

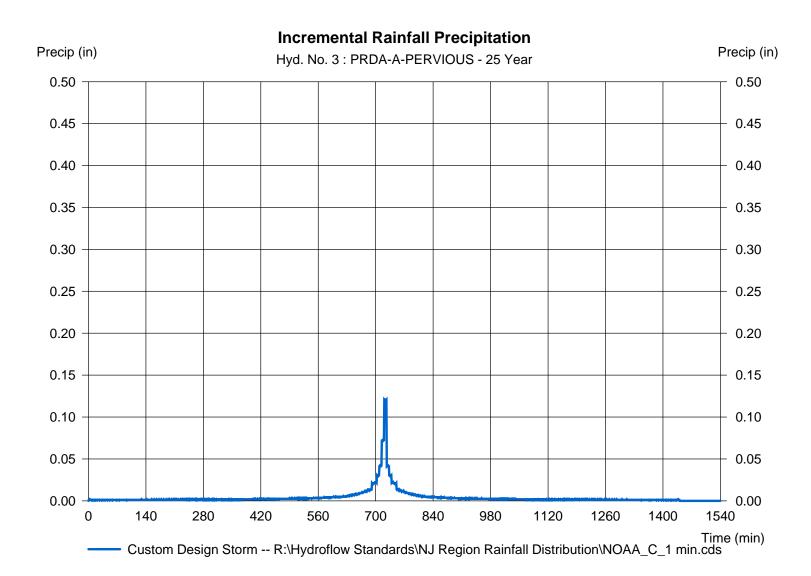

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 3

PRDA-A-PERVIOUS

Hydrograph type	= SCS Runoff	Peak discharge	= 12.28 cfs
Storm frequency	= 25 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 33,852 cuft
Drainage area	= 3.160 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.19 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ F	Regionanp Rakan of taol In Distribu	tiona\M84AA_C_1 min.cds

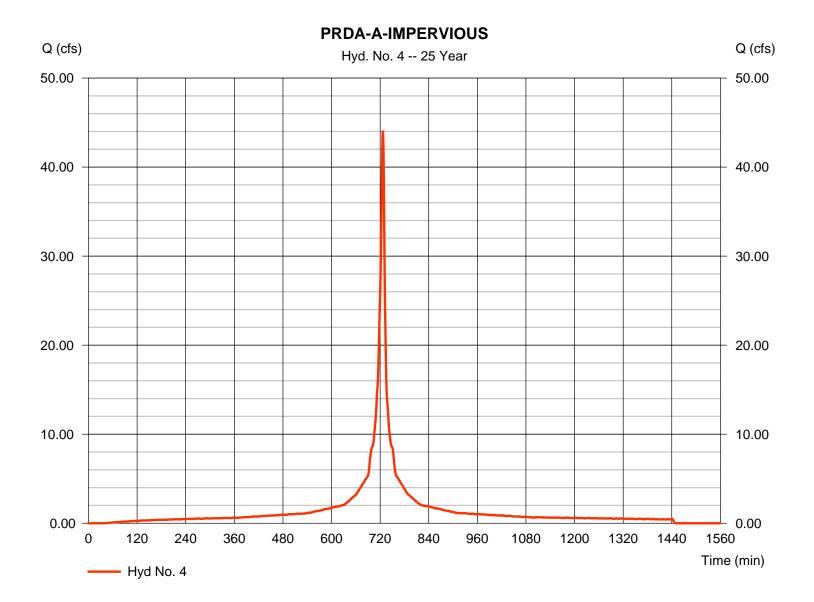

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 3

PRDA-A-PERVIOUS

Storm Frequency	= 25 yrs	Time interval	= 1 min	
Total precip.	= 6.1900 in	Distribution	= Custom	
Storm duration	= R:\Hydroflow State	R:\Hydroflow Standards\NJ Region Rainfall Distribution\NOAA_C_1 min.cds		


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

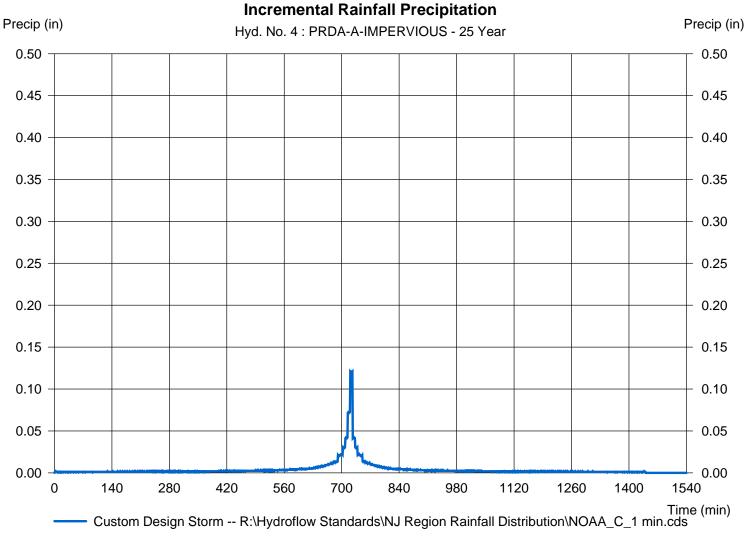
Thursday, 10 / 15 / 2020

Hyd. No. 4

PRDA-A-IMPERVIOUS

Hydrograph type	= SCS Runoff	Peak discharge	= 44.09 cfs
Storm frequency	= 25 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 144,595 cuft
Drainage area	= 6.490 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.19 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ F	Regloarp Ratanofad Ir Distribut	tiona∖Ma®AA_C_1 min.cds

Precipitation Report

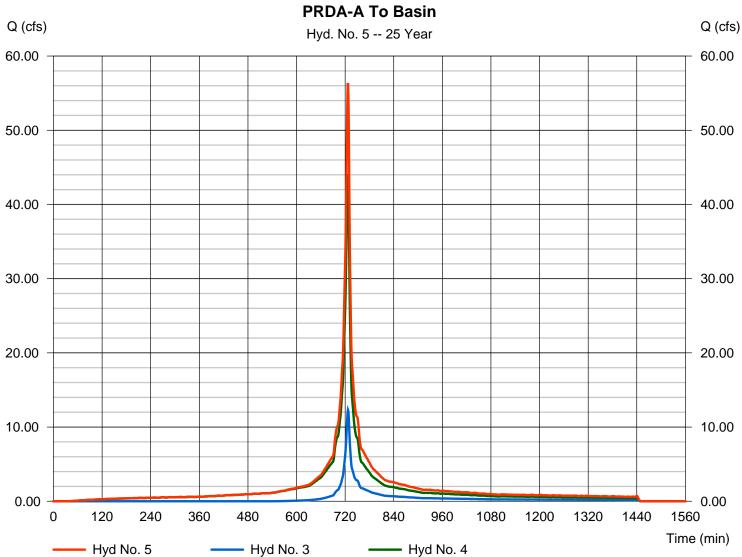

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 4

PRDA-A-IMPERVIOUS

Storm Frequency	= 25 yrs	Time interval	= 1 min
Total precip.	= 6.1900 in	Distribution	= Custom
Storm duration			Distribution\NOAA_C_1 min.cds



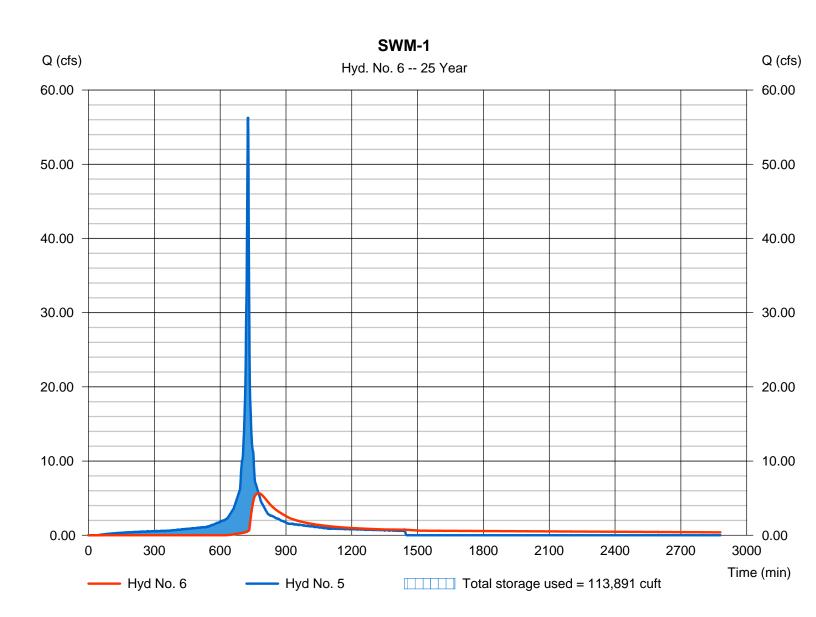
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 5

PRDA-A To Basin

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020


Thursday, 10 / 15 / 2020

Hyd. No. 6

SWM-1

cuft
cuft

Storage Indication method used.

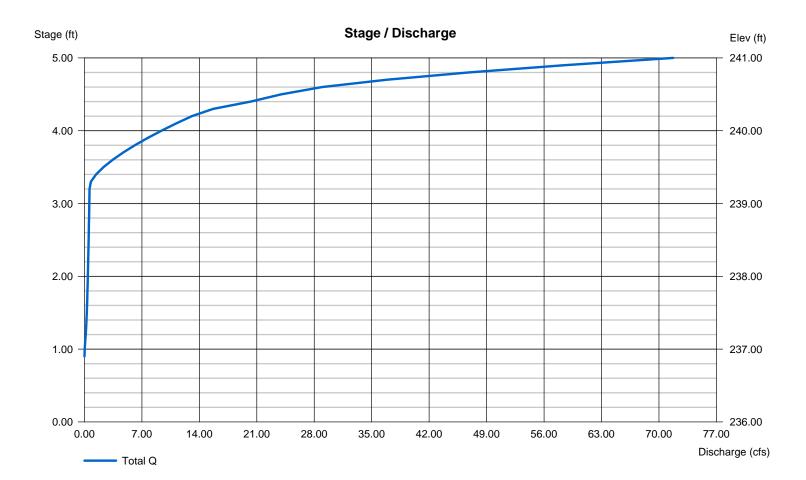
Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 1 - BIORETENTION BASIN

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 236.00 ft


Stage / Storage Table

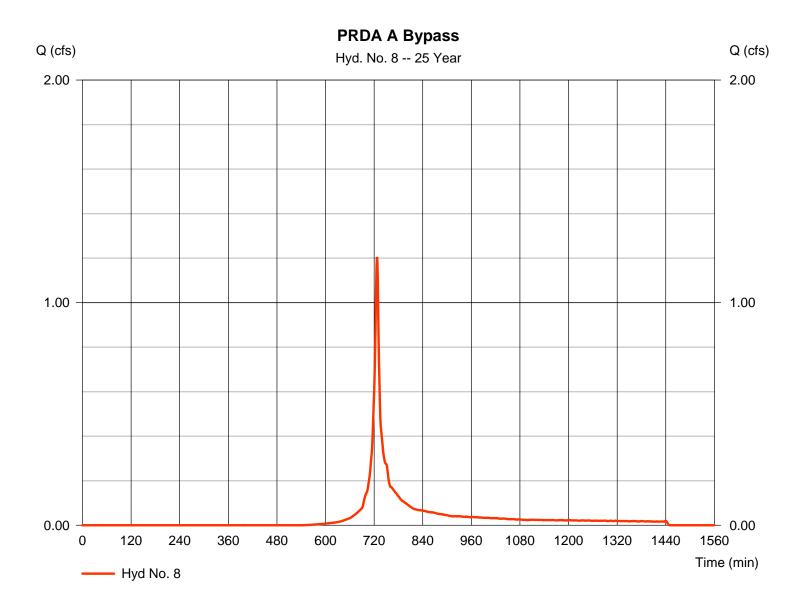
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	236.00	24,863	0	0
1.00	237.00	27,631	26,232	26,232
2.00	238.00	30,462	29,032	55,264
3.00	239.00	33,357	31,895	87,160
4.00	240.00	36,316	34,823	121,982
5.00	241.00	39,338	37,813	159,795

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	4.00	0.00	0.00	Crest Len (ft)	= 16.00	4.00	50.00	0.00
Span (in)	= 18.00	4.00	0.00	0.00	Crest El. (ft)	= 240.25	239.25	240.50	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	2.60	3.33
Invert El. (ft)	= 231.00	236.90	0.00	0.00	Weir Type	= 1	Rect	Broad	
Length (ft)	= 1.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.50	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

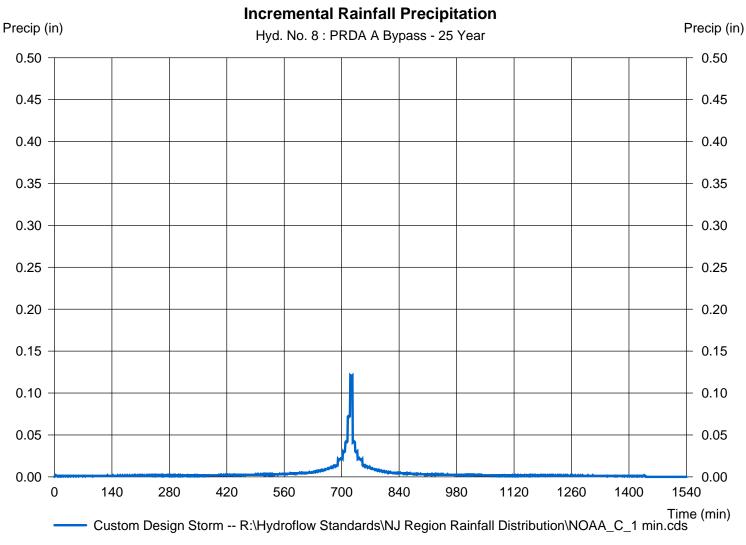
Thursday, 10 / 15 / 2020

Hyd. No. 8

PRDA A Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 1.205 cfs
Storm frequency	= 25 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 3,321 cuft
Drainage area	= 0.310 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.19 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Standards\NJ F	Reginoarp Ratanofadir Distribu	tion \M64AA_C_1 min.cds
	-		

Precipitation Report

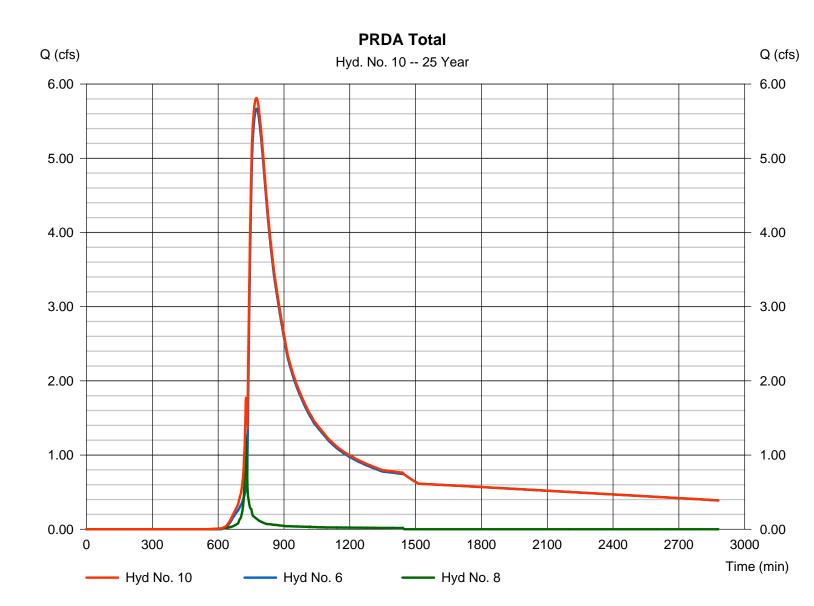

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 8

PRDA A Bypass

Storm Frequency	= 25 yrs	Time interval	= 1 min
Total precip.	= 6.1900 in	Distribution	= Custom
Storm duration	= R:\Hydroflow Star	ndards\NJ Region Rainfall	Distribution\NOAA_C_1 min.cds



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Hyd. No. 10

PRDA Total

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 10 / 15 / 2020

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)								
(Yrs)	В	D	E	(N/A)					
1	0.0000	0.0000	0.0000						
2	69.8703	13.1000	0.8658						
3	0.0000	0.0000	0.0000						
5	79.2597	14.6000	0.8369						
10	88.2351	15.5000	0.8279						
25	102.6072	16.5000	0.8217						
50	114.8193	17.2000	0.8199						
100	127.1596	17.8000	0.8186						
	1		1	1					

File name: SampleFHA.idf

Intensity = B / (Tc + D)^E

Return					Intens	ity Values	(in/hr)					
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.69	4.61	3.89	3.38	2.99	2.69	2.44	2.24	2.07	1.93	1.81	1.70
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.57	5.43	4.65	4.08	3.65	3.30	3.02	2.79	2.59	2.42	2.27	2.15
10	7.24	6.04	5.21	4.59	4.12	3.74	3.43	3.17	2.95	2.77	2.60	2.46
25	8.25	6.95	6.03	5.34	4.80	4.38	4.02	3.73	3.48	3.26	3.07	2.91
50	9.04	7.65	6.66	5.92	5.34	4.87	4.49	4.16	3.88	3.65	3.44	3.25
100	9.83	8.36	7.30	6.50	5.87	5.36	4.94	4.59	4.29	4.03	3.80	3.60

Tc = time in minutes. Values may exceed 60.

019\011910	9 (01) - Green Care F	arms - Hillsborough\Documents\Reports\SWM\Hydraflow\REsources\Hillsborough.pc	р

	Rainfall Precipitation Table (in)							
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	3.43	0.00	0.00	5.08	6.19	0.00	8.15

Project: PULEO INTERNATIONAL Location: TOWN OF CLINTON, NJ

Date:	10/10/20		
By:	KFO		

Emergency Spillway

Basin 1

Emergency Spillway - NJDEP Criteria

Peak 100 Year Inflow to Basin = 77.28 cfs 100 Year Inflow Plus 50% = 115.92 cfs Emergency Spillway = 200.00 LF Broad Crested Weir at Elev = 240.50 Weir Equation: Q = CLH^1.5 Solving for $= (Q/CL)^{0.67}$ Where: Q 115.92 cfs L = 200.00 feet C = 2.60 (Discharge Coefficient) H = Hydraulic Head over Spillway Hydraulic Head H = 0.37ft Velocity Over Spillway : V = Q/A Where: Q = 115.92 cfs A = L x H = 73.16 sfVelocity V= 1.58 fps Emergency Water Surface Elevation = 240.50 + H = 240.87 Top of Berm = 240.87 + 1 ft (Freeboard)= 241.87

Set Top of Berm Elevation = 241.90

RIPRAP APRON CALCULATIONS

HW #1 BASIN 1 INFLOW

D	o =	2.00	
W	o =	2.00	
ΤV	V =	0.40	(0.2 Do ASSUMED)
(ຊ =	28.14	CFS MAX. FLOW VIA PIPE
•	Y =	DEPTH OF	SCOUR HOLE BELOW INVERT
	q=	14.07	CFS/FT (Q/Wo)
<u> </u>			

<u>CASE 1 - TW < 1/2 Do</u>

La =	1.8 (q/(Do ^0.5)) + 7Do	=	31.91 FEET
		USE	32.0 FEET
Wa =	3Wo +La	=	38.0 FEET
<u>CASE 2 - TW > 1</u>	<u>1/2 Do</u>	USE	38.0 FEET
La =	3*Do (q/(Do ^0.5))	=	59.69 FEET
		USE	60.0 FEET

Wa =	3Wo + 0.4La	=	24.0 FEET
		USE	24.0 FEET

RIPRAP SIZING

	0.02		
D50 =	q^1.33 x 12	=	20.20 INCHES
	Tw		
		USE	21.0 INCHES

RIPRAP APRON CALCULATIONS

HW #2 BASIN 1 INFLOW

D	o =	2.00	
W	o =	2.00	
ΤV	V =	0.40	(0.2 Do ASSUMED)
(ຊ =	28.14	CFS MAX. FLOW VIA PIPE
•	Y = D	EPTH OF	SCOUR HOLE BELOW INVERT
	q=	14.07	CFS/FT (Q/Wo)
<u> </u>	· -		

<u>CASE 1 - TW < 1/2 Do</u>

La =	1.8 (q/(Do ^0.5)) + 7Do	=	31.91 FEET
		USE	32.0 FEET
Wa =	3Wo +La	=	38.0 FEET
CASE 2 - TW >	<u>1/2 Do</u>	USE	38.0 FEET
La =	3*Do (q/(Do ^0.5))	=	59.68 FEET
		USE	60.0 FEET

Wa =	3Wo + 0.4La	=	24.0 FEET
		USE	24.0 FEET

RIPRAP SIZING

	0.02		
D50 =	q^1.33 x 12	=	20.20 INCHES
	Tw		
		USE	21.0 INCHES

USE 19.0 FEET

RIPRAP APRON CALCULATIONS

HW #3 BASIN 1 OUTFALL

	Do =	1.50	
	Wo =	1.50	
	TW =	0.30	(0.2 Do ASSUMED)
	Q =	18.41	CFS MAX. FLOW VIA PIPE
	Y =	DEPTH OF	SCOUR HOLE BELOW INVERT
	q=	12.27	CFS/FT (Q/Wo)
- · · - · - · · · · · · · · · · · · · ·			

<u>CASE 1 - TW < 1/2 Do</u>

La =	1.8 (q/(Do ^0.5)) + 7Do	=	28.54 FEET
		USE	29.0 FEET
Wa =	3Wo +La	=	33.5 FEET
<u>CASE 2 - TW ></u>	<u>1/2 Do</u>	USE	34.0 FEET
La =	3*Do (q/(Do ^0.5))	=	45.10 FEET
		USE	46.0 FEET
Wa =	3Wo + 0.4La	=	18.4 FEET

RIPRAP SIZING

	0.02		
D50 =	q^1.33 x 12	=	22.46 INCHES
	Tw		
		USE	23.0 INCHES

Bioretention Draining Calculations:

Puleo International **Rate of Infiltration:**

Q=KIA Q: Rate of Infiltration (cfs) K: Design Permeability (fps) I: Hydraulic Gradient

A: Area of Infiltration (SF)

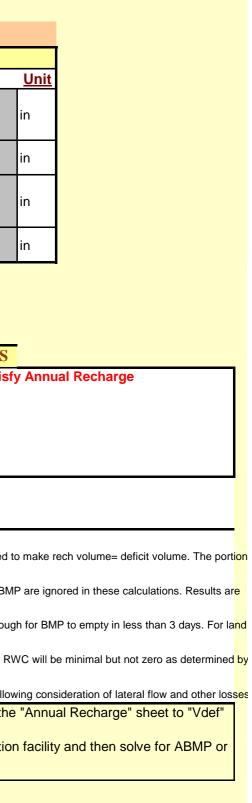
Κ

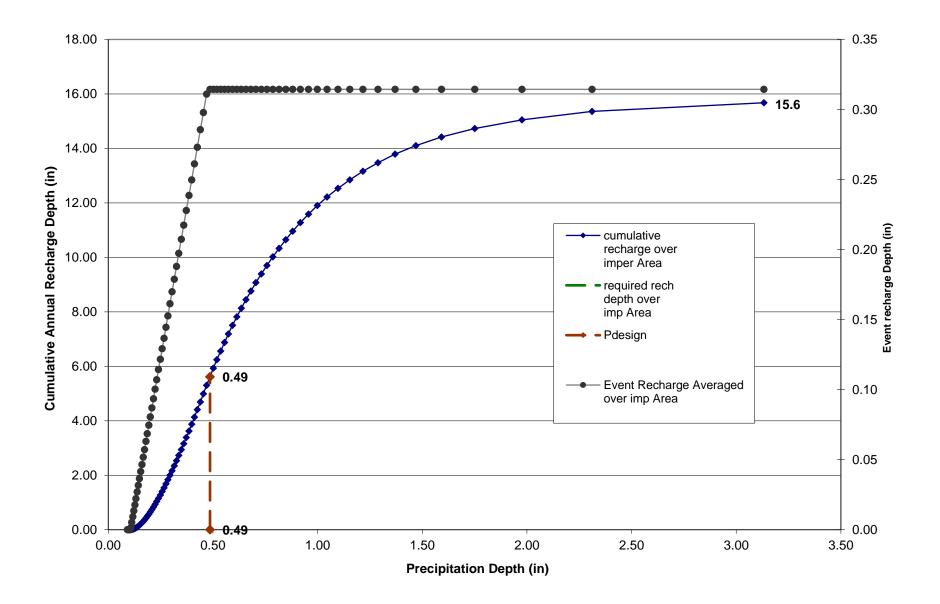
1.15741E-05 fps

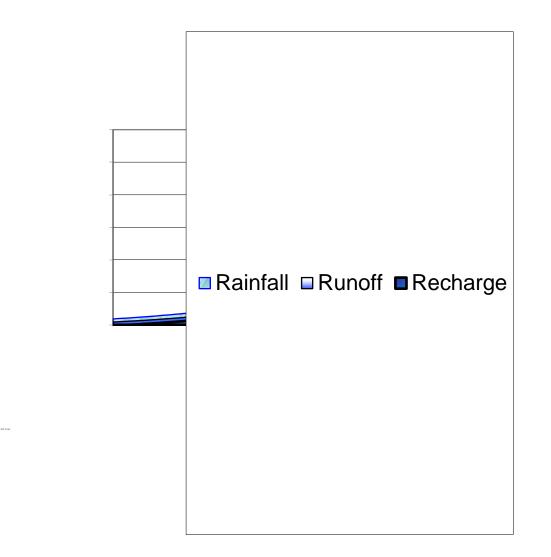
per Permeability of Bioretention Media

I=Davg/d Davg=(D1+D2)/2 D1: Min Distance to Groundwater D2: Max Distance to Groundwater d: distance from bottom of BMP to Groundwater D1 6.00 Ft D2 7.00 Ft Davg 6.50 Ft d 6.00 Ft L 1.083333333 A: Bottom 24863.00 SF Q 0.31175 CFS 1122.288 CF/Hr Volume

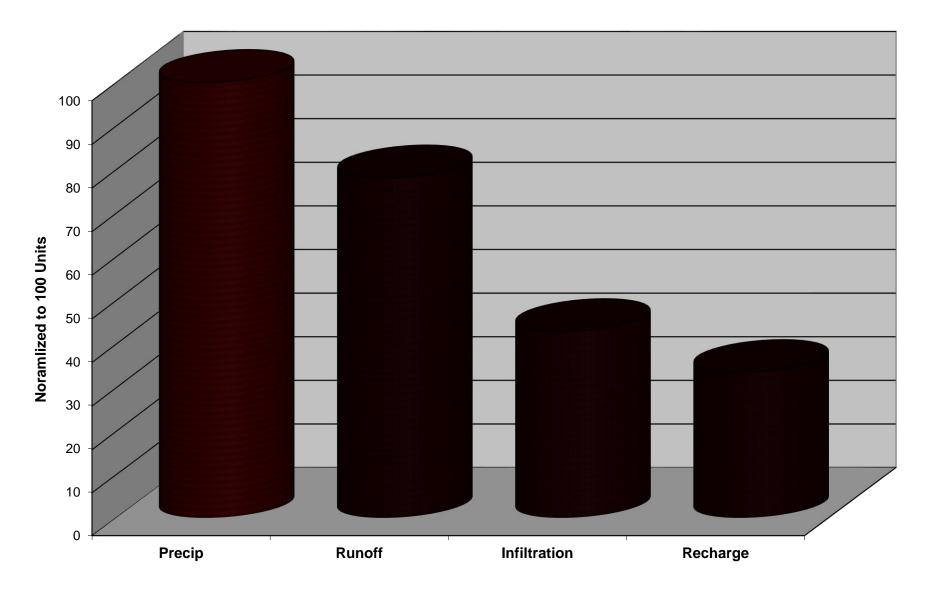
0.5 in/hr


t=V/Q Drain Time: WQV 22.6 Hours <72 Hours 25416 cf


New Jerse	roundwater		nalysis	(based on GSR-32)			Project Name:	PULEO INT		IAL		
Recharge Spreadshe Version 2.0	et	Select Township ↓	Average Annual P (in)	Climatic Factor					Description: 13 MOEBUS		S PLACE, TOWN OF CI	
November 2	2003	HUNTERDON CO., CLINTON TOWN	46.8	1.54					Analysis Date:	07/31/20		
		Pre-Developed Conc	ditions						Post-Develope	d Conditions		
Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)		Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)
1	7.25	Woods	Gladstone	15.5	408,616		1	5.24	Impervious areas	Gladstone	0.0	-
2	2.7	Woods	Duffield	15.5	151,633		2	1.85	Impervious areas	Duffield	0.0	-
3	0						3	0.85	Open space	Duffield	15.3	47,128
4	0						4	2.01	Open space	Gladstone	15.3	111,292
5	0						5	0				
6	0						6	0				
7	0						7	0				
8	0						8	0				
9	0						9	0				
10	0						10	0				
11	0						11	0				
12	0						12	0				
13	0						13	0				
14	0						14	0				
15	0						15	0				
Total =	10.0			Total Annual Recharge (in)	Total Annual Recharge (cu-ft)		Total =	10.0			Total Annual Recharge (in)	Total Annual Recharge (cu.ft)
				15.5	560,249		Annual	Recharg	ge Requirements Calculat	ion↓	4.4	158,420
Procedure	to fill the	Pre-Development and Post-Development Cor	nditions Tables			% of Pre-	Developed /	Annual Re	echarge to Preserve =	100%	Total Impervious Area (sq.ft)	308,840
For each land	segment, fi	rst enter the area, then select TR-55 Land Cover, then selec	ct Soil. Start from the	top of the table		Post-D	evelopme	ent Ann	ual Recharge Deficit=	401,829	(cubic feet)	
and proceed d	ownward. D	on't leave blank rows (with A=0) in between your segment e	entries. Rows with A=0	will not be		Recha	rge Effici	ency Pa	rameters Calculations (ar	ea averages)		
lisplayed or us	sed in calcu	lations. For impervious areas outside of standard lots selec	t "Impervious Areas" a	as the Land Cover	r.	RWC=	4.09	(in)	DRWC=	2.18	(in)	
Soil type for in	npervious ai	reas are only required if an infiltration facility will be built with	hin these areas.			ERWC =		(in)	EDRWC=	0.50	(in)	


		Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)
		1	5.24	Impervious areas	Gladstone	0.0	-
		2	1.85	Impervious areas	Duffield	0.0	-
		3	0.85	Open space	Duffield	15.3	47,128
		4	2.01	Open space	Gladstone	15.3	111,292
		5	0				
		6	0				
		7	0				
_		8	0				
		9	0				
		10	0				
		11	0				
_		12	0				
_		13	0				
		14	0				
		15	0			Total	Total
		Total =	10.0			Annual Recharge (in)	Annual Recharge (cu.ft)
		Annual	Recharg	e Requirements Calculat	ion ↓	4.4	158,420
	% of Pre-I	Developed A	Annual Re	charge to Preserve =	100%	Total Impervious Area (sq.ft)	308,840
	Post-Development Annual Recharge Deficit= 401,829						
ļ	Recha	rge Effici	ency Pa	rameters Calculations (ar	ea averages)		
	RWC=	4.09	(in)	DRWC=	2.18	(in)	
	ERWC =	0.94	(in)	EDRWC=	0.50	(in)	

PULEC	INTERNATIONAL	


Project Name		Description Analysis Date BMP or I				<u>ID Type</u>				
PULEO INTERNATI	ONAL	13 MOEB	US PLAC	E, TOWN OF CLI	07/31/20		Bioretention Basin			
Recharge BMP Input	t Parame	eters		Root Zone Water	capacity	Calculated	l Paramete	Recharge Design	Paramete	rs
Parameter	<u>Symbol</u>	<u>Value</u>	<u>Unit</u>	Parameter	<u>Symbol</u>	<u>Value</u>	<u>Unit</u>	Parameter Parameter	<u>Symbol</u>	<u>Value</u>
BMP Area	ABMP	24863.0	sq.ft	Empty Portion of RWC under Post-D Natural Recharge	ERWC	1.26	in	Inches of Runoff to capture	Qdesign	0.38
BMP Effective Depth, this is the design variable	dBMP	4.6	in	ERWC Modified to consider dEXC	EDRWC	0.88	in	Inches of Rainfall to capture	Pdesign	0.49
Upper level of the BMP surface (negative if above ground)	dBMPu	-10.8	in	Empty Portion of RWC under Infilt. BMP	RERWC	0.69	in	Recharge Provided Avg. over Imp. Area		15.7
Depth of lower surface of BMP, must be>=dBMPu	dEXC	24.0	in		·			Runoff Captured Avg. over imp. Area		20.1
Post-development Land Segment Location of BMP, Input Zero if Location is distributed or undetermined	SegBMP	4	unitless							
		•	•	BMP Calculated S	Size Paran	neters		CALCULATION C	HECK ME	SSAGES
				ABMP/Aimp	Aratio	0.08	unitless	Volume Balance->	Solve Proble	em to satisf
				BMP Volume	VBMP	9,531		dBMP Check>	OK	
Parameters from An	nual Red	charge Wor	ksheet	System Performa	nce Calcu	lated Para	ameters	dEXC Check>	OK	
Post-D Deficit Recharge (or desired recharge volume)	Vdef	401,829	cu.ft	Annual BMP Recharge Volume		403,452	cu.ft	BMP Location>	OK	
Post-D Impervious Area (or target Impervious Area)	Aimp	308,840	sq.ft	Avg BMP Recharge Efficiency		78.1%	Represents % Infiltration Recharged	OTHER NOTES		
Root Zone Water Capacity	RWC	5.48	in	%Rainfall became Runoff		78.1%	%	Pdesign is accurate only afte	r BMP dimension	s are updated t
RWC Modified to consider dEXC	DRWC	3.83	in	%Runoff Infiltrated		54.9%	%	of BMP infiltration prior to filli	ng and the area o	ccupied by BM
Climatic Factor	C-factor	1.54	no units	%Runoff Recharged		42.9%	%	sensetive to dBMP, make su	sensetive to dBMP, make sure dBMP selected is small enoug	
Average Annual P	Pavg	46.8	in	%Rainfall Recharged		33.5%	%	Segment Location of BMP if you select "impervious areas" R		vious areas" RV
Recharge Requirement over Imp. Area	dr	15.6	in					the soil type and a shallow ro	oot zone for this L	and Cover allov
How to solve for different in and "Aimp" on this page. The To solve for a smaller BMP of dBMP. To go back to the def	is allows so or a LID-IM	lution for a sing P to recharge o	le BMP to han nly part of th	andle the entire recharge r e recharge requirement, s	requirement a	ssuming the r	unoff from entil	e impervious area is ava	ailable to the B	MP.

From Precipitation to Recharge

	E&LP			High T : 90	West Main Street Bridge, NJ 08829)8.238.0544 F : 908.238.9572 Asbury Park Denville Philadelp
Martin			40		_
Municipality:	Clinton	Block:	18	Lot:	5
Soil Log and Interp	pretation				
1 Soil Log #: 2 Log:	SL-1 Date of Soil Log: <u>12</u>	/ <u>22/20_</u> Method:	Profile	e Pit	
Depth (inches) 0 - 11"	Munsell Color Name & Sym Fragments; Structure; Cons Topsoil				
11 - 48"	7.5YR 5/6; Loam Sand Coarse, Prominent; SA		•	6-66" 7.5	YR4/2 in Color, Many,
48 - 120"	7.5YR 4/4; Sandy Clay	Loam: 5% Grav	el 2% Co	bble 1%	Stone SAB Moist Fr
	Observations: e Observed - Depth (inches): ded - Depth (inches):	afterhours	of observa	tion	
Seepage Pit Flood 4 Soil Limiting Z Fr. Ma Ex Ex Ex Hy Hy Pe	e Observed - Depth (inches):	tegories): oth to Top: h to Top: oth Top to Bottom: Depth to Top: Depth Top to Botto um - Depth to Top: oth Top to Bottom:		tion	
Seepage Pit Flood 4 Soil Limiting Z 4 Soil Limiting Z Fr. Ma Ex Ex Ex Ex Hy Hy Hy Basification of	e Observed - Depth (inches): ded - Depth (inches): ones (Check ALL applicable ca actured Rock Substratum - Dept assive Rock Substratum - Dept assive Rock Substratum - Dept accessively Coarse Horizon - Dep accessively Coarse Substratum - adraulically Restrictive Horizon - adraulically Restrictive Substratum arched Zone of Saturation - Dep agional Zone of Saturation - Dep	tegories): oth to Top: h to Top: oth Top to Bottom: Depth to Top: Depth Top to Botto um - Depth to Top: oth Top to Bottom: oth Top to Bottom: oth to Top: on this form is true a Pollution Control Ac	 m: 	— e. I am aw 58:10A-1 e	

<u>Clinton</u>	Block:			
	Block			
etation	DIUCK.	<u>18</u> Lot:	5	
<u>L-2</u> Date of Soil Log: <u>12/2</u>	2/20 Method:	Profile Pit	-	
Munsell Color Name & Symbo Fragments; Structure; Consis Topsoil				
7.5YR 4/4; Sandy Clay;	5% Gravel, 5% (Cobble, 2% St	one; SAB, Moist, Friab	le
7.5YR 3/4; Sandy Clay; ² Machine Refusal @ 106'		% Cobble, 30%	6 Stone; SAB, Saturate	ed, Friable;
Observed - Depth (inches): d - Depth (inches): mes (Check ALL applicable cate stured Rock Substratum - Depth sive Rock Substratum - Depth essively Coarse Horizon - Depth essively Coarse Substratum - D raulically Restrictive Horizon - D raulically Restrictive Substratun ched Zone of Saturation - Depth	gories): n to Top: <u>50"</u> to Top: h Top to Bottom: Depth to Top: Depth Top to Botton n - Depth to Top: n Top to Bottom:			
ata is a violation of the Water Po ties as prescribed in N.J.A.C. 7	ollution Control Act	(N.J.S.A. 58:10A		
	ctured Rock Substratum - Depth sive Rock Substratum - Depth essively Coarse Horizon - Depth essively Coarse Substratum - D raulically Restrictive Horizon - D raulically Restrictive Substratum ched Zone of Saturation - Depth ional Zone of Saturation - Depth hat the information furnished or ata is a violation of the Water Po	Observed - Depth (inches):	Observed - Depth (inches):	Observed - Depth (inches):

	140 West Main Street High Bridge, NJ 08829 T: 908.238.0544 F: 908.238.9572 Clinton Asbury Park Denville Philadelp
Municipality:	Clinton Block: 18 Lot: 5
Soil Log and Interp	pretation
1 Soil Log #: 2 Log:	SL-3 Date of Soil Log: <u>12/22/20</u> Method: Profile Pit
Depth (inches)	Munsell Color Name & Symbol; Estimated Textural Class; Estimated Volume % Coarse Fragments; Structure; Consistence; Mottling Abundance, Size and Contrast
0 - 8"	Topsoil
8 - 68"	7.5YR 5/6; Sandy Loam; 2% Gravel; SAB, Moist, Friable; Seepage @ 33"
68 - 120"	7.5YR 4/4; Sandy Clay Loam; 5% Gravel, 5% Cobble, 2% Stone; Mottling @ 76-78 7.5YR 5/8 in Color, Common, Medium, Distinct; SAB, Moist, F
	er Observations: ge Observed - Depth (inches): <u>33"</u> oded - Depth (inches): after hours of observation
Fr Mi Ex	Zones (Check ALL applicable categories): Tractured Rock Substratum - Depth to Top: Massive Rock Substratum - Depth to Top:
E> Hy	Excessively Coarse Substratum - Depth to Top: Iydraulically Restrictive Horizon - Depth Top to Bottom: Iydraulically Restrictive Substratum - Depth to Top: Perched Zone of Saturation - Depth Top to Bottom:
	egional Zone of Saturation - Depth to Top:
⁵ I hereby certify falsification of	fy that the information furnished on this form is true and accurate. I am aware that f data is a violation of the Water Pollution Control Act (N.J.S.A. 58:10A-1 et seq.) and is nalties as prescribed in N.J.A.C. 7:14-8.

	E&LP	140 West Main Street High Bridge, NJ 08829 T: 908.238.0544 F: 908.238.9572 Clinton Asbury Park Denville Philadel
Municipality:	Clinton Block:	18Lot:5
Soil Log and Interp	pretation	
1 Soil Log #: 2 Log:	SL-4 Date of Soil Log: <u>12/22/20</u> Method:	Profile Pit
Depth (inches)	Munsell Color Name & Symbol; Estimated Tex Fragments; Structure; Consistence; Mottling A	
0 - 7"	Topsoil	
7 - 56"	7.5YR 5/6; Sandy Loam; 5% Gravel, 10	0% Cobble, 5% Stone; SAB, Moist, Friat
56 - 120"	7.5YR 5/8; Sandy Clay Loam; 10% Gra Mottling @ 67-78 10YR 5/8 in Color, M	avel, 20% Cobble, 15% Stone; lany, Coarse, Prominent; SAB, Moist, Fri
Pit Floor 4 Soil Limiting Z Fr M E E E E H H H	e Observed - Depth (inches):	
falsification of subject to pen Signature of S Signature and	y that the information furnished on this form is true data is a violation of the Water Pollution Control A alties as prescribed in N.J.A.C. 7:14-8. Write Evaluator: Seal of Professional Engineer: 4GB04258200 Date:	

License #: 24GB04258200

Date:

140 West Main Street High Bridge, NJ 08829 T: 908.238.0544 F: 908.238.9572 Clinton Asbury Park Denville Philadelphia

/lunicipality:	Clinton	Block:	18Lot:	5
Soil Log and Inte	rpretation			
1 Soil Log #: _ 2 Log:	SL-5 Date of Soil Log:	12/22/20 Method:	Profile Pit	
Depth (inches)	Munsell Color Name & S Fragments; Structure; C	-		
0 - 7"	Topsoil			
7 - 45"	7.5YR 4/4; Clay Loa	m; 10% Gravel; SA	B, Moist, Friable	
45 - 120"	7.5YR 5/4; Clay Loa	m; 15% Gravel, 10 ⁰	% Cobble, 5% Ston	e; SAB, Moist, Friable
	er Observations: ge Observed - Depth (inches)).		
	oded - Depth (inches):		of observation	
-	Zones (Check ALL applicable	•		
	Fractured Rock Substratum - Massive Rock Substratum - D	· · · · · · · · · · · · · · · · · · ·	_	
	Excessively Coarse Horizon -	· ·		
	Excessively Coarse Substratu Hydraulically Restrictive Horiz			
	Hydraulically Restrictive Subs			
	Perched Zone of Saturation -			
	Regional Zone of Saturation -	Depth to Top:	-	
-				
	tify that the information furnish of data is a violation of the Wa			
	enalties as prescribed in N.J.A			
Signature of	Site Evaluator:	$1 \sqrt{n}$	Date:	12/20/2020
-	nd Seal of Professional Engine	er:		

APPLICATION FOR PERMIT TO CONSTRUCT/ALTER
AN INDIVIDUAL SUBSURFACE SEWAGE DISPOSAL SYSTEM

E&LP

		L SUBSURFACE				
Municipality:	Clinton		Block:	18	Lot:	5
Form 3g - Ba	sin Flooding Test [Data				
1 Test #	BF-1	Reference Soil Log	SL	2	Date Tested	12/22/20
2 Depth of I	Pit (ft) 8.83					
3 Area of pi	: (ft ²) <u>50</u>					
4 Descriptio Type of Ro	n of rock substratur ock <u>Lime</u>	n within test zone: Stone			_	
Name of F	ormation				_	
Average F	racture Spacing				-	
Type of Fr	actures				-	
O	oen (wide), clean - w	vidth of openings (m	m)			
<u> </u>	oen (wide), infilled v	vith fines - width of o	opening (m	m)	-	
Ti	ght (closed)					
Orientatio	n of Fractures:					
Ho	orizontal (parallel to	pit bottom) or near	ly so			
X In	clined					
Ve	rtical (parallel to sic	les of pit) or nearly s	50			
Hardness	of Rock:					
Ri	ppable with hand to	ols				
XN	ot rippable with han	d tools, rippable by	machine			
No	ot rippable by machi	ne				
5 Time/Date	e of 1st basin floodir	ng <u>11:03 am</u>	<u>12/22</u> Vo	olume of	water added, ga	l. <u>375</u>
6 Result of 2	st basin flooding:					
	•	4 hours - indicate ti	me/date		11:50 am 12	2/22
	sin not drained with		·			
7 Time/Date	e of 2nd basin floodi	^{ng} <u>12:00 pm</u>	<u>12/22</u> Vo	olume of	water added, ga	l. <u>375</u>
8 Result of 2	nd basin flooding:					
<u>X</u> Ba	sin drained within 2	4 hours - indicate ti	me/date		12:45 pm 1	2/22
Ba	sin not drained with	nin 24 hours				
9 I hereby c	ertify that the informa	ation furnished on Fo	orm 3g of th	nis applica	ation (and the att	achments thereto)
		are that falsification of d is subject to penalt				ution Control Act
Signature of S	ite Evaluator	LAR.	$1 \Omega $	Dat	te	
Signature and	Seal of Professiona	I Engineer	MA			
License #	24GB042582		\mathcal{O}	Dat	te	

	Engineering & Land Planning Associates						
Project: Location: Test By:	Puleo International 13 Moebus Place, Clinton Joey McGinnis		Date: Sample:	12/22/2020 IN PLACE SL-1 @ 48"			
				Distu	Disturbed		
L=	6.000	T1=	186	Tube Weight	734		
H1=	6.000	T2=	187	Gross Weight	1,074		
H2=	5.000	T3=	186	Net Weight	340		
r=	1.000	T4=	187				
R=	1.000	T5=	188	Sample Vol. (in ³)	18.84		
		T(sec.)= T(min.)=	188 3.13	(cm³)	308.7876		
		. ()	00	Bulk Density	1.101080484		
					min. 1.2 gr/cm ³		
Soil Permeability:			<u>20.95</u>				
Soil Class:			<u>K5</u>				

$$K(in/hr) = 60 \min/hr \times \frac{L(in)}{T(\min)} \times \frac{r^2}{R^2} \times \ln\left(\frac{H_1}{H_2}\right) \quad \text{[Equation 4]}$$

- K = permeability of the soil sample, in inches per hour;
- L = length of the soil core, in inches;
- T = time required for the water level to drop from H₁ to H₂ during the final test interval, in minutes,;
- r = radius of the standpipe, in centimeters or inches;
- R = radius of the soil core, in the same units as "r";
- H₁ = height of the water level above the rim of the test basin at the beginning of each test interval, in inches; and
- H₂ = height of the water level above the rim of the test basin at the end of each test interval, in inches.

	Engineering & Land Planning Associates						
Project: Location: Test By:	Puleo International 13 Moebus Place, Clinton Joey McGinnis		Date: Sample:	12/22/2020 IN PLACE SL-1 @ 80"			
				Distu	urbed		
L=	6.000	T1=	265	Tube Weight	695		
H1=	6.000	T2=	263	Gross Weight	1,036		
H2=	4.500	T3=	266	Net Weight	341		
r=	1.000	T4=	264				
R=	1.000	T5=	263	Sample Vol. (in ³)	18.84		
		T(sec.)= T(min.)=	263 4.38	(cm³)	308.7876		
		. ()		Bulk Density	1.104318956		
					min. 1.2 gr/cm ³		
Soil Permeability:		<u>23.63</u>					
Soil Class:		<u>K5</u>					

$$K(in/hr) = 60 \min/hr \times \frac{L(in)}{T(\min)} \times \frac{r^2}{R^2} \times \ln\left(\frac{H_1}{H_2}\right) \quad \text{[Equation 4]}$$

- K = permeability of the soil sample, in inches per hour;
- L = length of the soil core, in inches;
- T = time required for the water level to drop from H₁ to H₂ during the final test interval, in minutes,;
- r = radius of the standpipe, in centimeters or inches;
- R = radius of the soil core, in the same units as "r";
- H₁ = height of the water level above the rim of the test basin at the beginning of each test interval, in inches; and
- H₂ = height of the water level above the rim of the test basin at the end of each test interval, in inches.

Engineering & Land Planning Associates						
Project: Location: Test By:	Puleo International 13 Moebus Place, Clinton Joey McGinnis		Date: Sample:	12/22/2020 IN PLACE SL-3 @ 60"		
				Distu	urbed	
L=	6.000	T1=	196	Tube Weight	695	
H1=	6.000	T2=	198	Gross Weight	1,154	
H2=	5.000	T3=	199	Net Weight	459	
r=	1.000	T4=	202	_		
R=	1.000	T5=	200	Sample Vol. (in ³)	18.84	
		T(sec.)= T(min.)=	200 3.33	(cm³)	308.7876	
		()		Bulk Density	1.486458653	
					min. 1.2 gr/cm ³	
Soil Permeability:		<u>19.69</u>				
Soil Class:		<u>K5</u>				

$$K(in/hr) = 60 \min/hr \times \frac{L(in)}{T(\min)} \times \frac{r^2}{R^2} \times \ln\left(\frac{H_1}{H_2}\right) \quad \text{[Equation 4]}$$

- K = permeability of the soil sample, in inches per hour;
- L = length of the soil core, in inches;
- T = time required for the water level to drop from H₁ to H₂ during the final test interval, in minutes,;
- r = radius of the standpipe, in centimeters or inches;
- R = radius of the soil core, in the same units as "r";
- H₁ = height of the water level above the rim of the test basin at the beginning of each test interval, in inches; and
- H₂ = height of the water level above the rim of the test basin at the end of each test interval, in inches.

Engineering & Land Planning Associates						
Project: Location: Test By:	Puleo International 13 Moebus Place, Clinton Joey McGinnis		Date: Sample:	12/22/2020 IN PLACE SL-3 @ 100"		
				Distu	<u>Disturbed</u>	
L=	6.000	T1=	220	Tube Weight	700	
H1=	6.000	T2=	224	Gross Weight	1,152	
H2=	5.450	T3=	223	Net Weight	452	
r=	1.000	T4=	223			
R=	1.000	T5=	222	Sample Vol. (in ³)	18.84	
		T(sec.)= T(min.)=	222 3.70	(cm³)	308.7876	
		, , , , , , , , , , , , , , , , , , ,		Bulk Density	1.463789349	
					min. 1.2 gr/cm ³	
Soil Permeability: <u>9</u>		<u>9.35</u>				
Soil Class:		<u>K4</u>				

$$K(in/hr) = 60 \min/hr \times \frac{L(in)}{T(\min)} \times \frac{r^2}{R^2} \times \ln\left(\frac{H_1}{H_2}\right) \quad \text{[Equation 4]}$$

- K = permeability of the soil sample, in inches per hour;
- L = length of the soil core, in inches;
- T = time required for the water level to drop from H₁ to H₂ during the final test interval, in minutes,;
- r = radius of the standpipe, in centimeters or inches;
- R = radius of the soil core, in the same units as "r";
- H₁ = height of the water level above the rim of the test basin at the beginning of each test interval, in inches; and
- H₂ = height of the water level above the rim of the test basin at the end of each test interval, in inches.

Engineering & Land Planning Associates						
Project: Location: Test By:	Puleo International 13 Moebus Place, Clinton Joey McGinnis		Date: Sample:	12/22/2020 IN PLACE SL-4 @ 55"		
				Distu	Disturbed	
L=	6.000	T1=	321	Tube Weight	700	
H1=	6.000	T2=	326	Gross Weight	1,140	
H2=	4.500	T3=	326	Net Weight	440	
r=	1.000	T4=	323			
R=	1.000	T5=	325	Sample Vol. (in ³)	18.84	
		T(sec.)= T(min.)=	325 5.42	(cm ³)	308.7876	
		, , ,		Bulk Density	1.424927685	
					min. 1.2 gr/cm ³	
Soil Permeability:		<u>19.12</u>				
Soil Class:			<u>K4</u>			

$$K(in/hr) = 60 \min/hr \times \frac{L(in)}{T(\min)} \times \frac{r^2}{R^2} \times \ln\left(\frac{H_1}{H_2}\right) \quad \text{[Equation 4]}$$

- K = permeability of the soil sample, in inches per hour;
- L = length of the soil core, in inches;
- T = time required for the water level to drop from H₁ to H₂ during the final test interval, in minutes,;
- r = radius of the standpipe, in centimeters or inches;
- R = radius of the soil core, in the same units as "r";
- H₁ = height of the water level above the rim of the test basin at the beginning of each test interval, in inches; and
- H₂ = height of the water level above the rim of the test basin at the end of each test interval, in inches.

Engineering & Land Planning Associates						
Project: Location: Test By:	Puleo International 13 Moebus Place, Clinton Joey McGinnis		Date: Sample:	12/22/2020 IN PLACE SL-4 @ 110"		
				Distu	Disturbed	
L=	6.000	T1=	265	Tube Weight	700	
H1=	6.000	T2=	263	Gross Weight	1,109	
H2=	5.450	T3=	264	Net Weight	409	
r=	1.000	T4=	266			
R=	1.000	T5=	265	Sample Vol. (in ³)	18.84	
		T(sec.)= T(min.)=	265 4.42	(cm³)	308.7876	
		(Bulk Density	1.324535053	
					min. 1.2 gr/cm ³	
Soil Permeability: 7.84			7.84			
· ·						
Soil Class:		<u>K4</u>				

$$K(in/hr) = 60 \min/hr \times \frac{L(in)}{T(\min)} \times \frac{r^2}{R^2} \times \ln\left(\frac{H_1}{H_2}\right) \quad \text{[Equation 4]}$$

- K = permeability of the soil sample, in inches per hour;
- L = length of the soil core, in inches;
- T = time required for the water level to drop from H₁ to H₂ during the final test interval, in minutes,;
- r = radius of the standpipe, in centimeters or inches;
- R = radius of the soil core, in the same units as "r";
- H₁ = height of the water level above the rim of the test basin at the beginning of each test interval, in inches; and
- H₂ = height of the water level above the rim of the test basin at the end of each test interval, in inches.

	Engineering & Land Planning Associates						
Project: Location: Test By:	Puleo International 13 Moebus Place, Clinton Joey McGinnis		Date: Sample:	12/22/2020 IN PLACE SL-5 @ 40"			
				Distu	<u>Disturbed</u>		
L=	6.000	T1=	197	Tube Weight	700		
H1=	6.000	T2=	199	Gross Weight	1,144		
H2=	5.000	T3=	196	Net Weight	444		
r=	1.000	T4=	198				
R=	1.000	T5=	198	Sample Vol. (in ³)	18.84		
		T(sec.)= T(min.)=	198 3.30	(cm ³)	308.7876		
		, , ,		Bulk Density	1.437881573		
					min. 1.2 gr/cm ³		
Soil Permeability:		<u>19.89</u>					
Soil Class:		<u>K4</u>					

$$K(in/hr) = 60 \min/hr \times \frac{L(in)}{T(\min)} \times \frac{r^2}{R^2} \times \ln\left(\frac{H_1}{H_2}\right) \quad \text{[Equation 4]}$$

- K = permeability of the soil sample, in inches per hour;
- L = length of the soil core, in inches;
- T = time required for the water level to drop from H₁ to H₂ during the final test interval, in minutes,;
- r = radius of the standpipe, in centimeters or inches;
- R = radius of the soil core, in the same units as "r";
- H₁ = height of the water level above the rim of the test basin at the beginning of each test interval, in inches; and
- H₂ = height of the water level above the rim of the test basin at the end of each test interval, in inches.

Engineering & Land Planning Associates						
Project: Location: Test By:	Puleo International 13 Moebus Place, Clinton Joey McGinnis		Date: Sample:	12/22/2020 IN PLACE SL-5 @ 100"		
				Distu	Disturbed	
L=	6.000	T1=	245	Tube Weight	700	
H1=	6.000	T2=	243	Gross Weight	1,145	
H2=	5.450	T3=	242	Net Weight	445	
r=	1.000	T4=	245			
R=	1.000	T5=	245	Sample Vol. (in ³)	18.84	
		T(sec.)= T(min.)=	245 4.08	(cm³)	308.7876	
		, , ,		Bulk Density	1.441120045	
					min. 1.2 gr/cm ³	
Soil Permeability: 8.4		<u>8.48</u>				
Soil Class:		<u>K4</u>				

$$K(in/hr) = 60 \min/hr \times \frac{L(in)}{T(\min)} \times \frac{r^2}{R^2} \times \ln\left(\frac{H_1}{H_2}\right) \quad \text{[Equation 4]}$$

- K = permeability of the soil sample, in inches per hour;
- L = length of the soil core, in inches;
- T = time required for the water level to drop from H₁ to H₂ during the final test interval, in minutes,;
- r = radius of the standpipe, in centimeters or inches;
- R = radius of the soil core, in the same units as "r";
- H₁ = height of the water level above the rim of the test basin at the beginning of each test interval, in inches; and
- H₂ = height of the water level above the rim of the test basin at the end of each test interval, in inches.

New Jersey Stormwater Best Management Practices Manual

February 2004

APPENDIX A

Low Impact Development Checklist

A checklist for identifying nonstructural stormwater management strategies incorporated into proposed land development

According to the NJDEP Stormwater Management Rules at N.J.A.C. 7:8, the groundwater recharge, stormwater quality, and stormwater quantity standards established by the Rules for major land development projects must be met by incorporating nine specific nonstructural stormwater management strategies into the project's design to the maximum extent practicable.

To accomplish this, the Rules require an applicant seeking land development approval from a regulatory board or agency to identify those nonstructural strategies that have been incorporated into the project's design. In addition, if an applicant contends that it is not feasible to incorporate any of the specific strategies into the project's design, particularly for engineering, environmental, or safety reasons, the Rules further require that the applicant provide a basis for that contention.

This checklist has been prepared to assist applicants, site designers, and regulatory boards and agencies in ensuring that the nonstructural stormwater management requirements of the Rules are met. It provides an applicant with a means to identify both the nonstructural strategies incorporated into the development's design and the specific low impact development BMPs (LID-BMPs) that have been used to do so. It can also help an applicant explain the engineering, environmental, and/or safety reasons that a specific nonstructural strategy could not be incorporated into the development's design.

The checklist can also assist municipalities and other land development review agencies in the development of specific requirements for both nonstructural strategies and LID-BMPs in zoning and/or land use ordinances and regulations. As such, where requirements consistent with the Rules have been adopted, they may supersede this checklist.

Finally, the checklist can be used during a pre-design meeting between an applicant and pertinent review personnel to discuss local nonstructural strategies and LID-BMPs requirements in order to optimize the development's nonstructural stormwater management design.

Since this checklist is intended to promote the use of nonstructural stormwater management strategies and provide guidance in their incorporation in land development projects, municipalities are permitted to revise it as necessary to meet the goals and objectives of their specific stormwater management program and plan within the limits of N.J.A.C. 7:8.

Low Impact Development Checklist

A checklist for identifying nonstructural stormwater management strategies incorporated into proposed land development

Municipality: Clinton Town
County: Hunterdon Date: 10/10/2020
Review board or agency:
Proposed land development name: Puleo International
Lot(s): 5 Block(s): 18
Project or application number:
Applicant's name: Puleo International
Applicant's address: 3614 Kennedy Road South Planinfield NJ 07080
Telephone: Fax:
Email address:
Designer's name: E&LP Associates, Inc Wayne Ingram
Designer's address: 140 West Main Street, High Bridge, NJ 08829
Designer's address:
Telephone: 908-238-0544 Fax: 908-238-9572
Email address: wingram@elp-inc.com

Part 1: Description of Nonstructural Approach to Site Design

In narrative form, provide an overall description of the nonstructural stormwater management approach and strategies incorporated into the proposed site's design. Attach additional pages as necessary. Details of each nonstructural strategy are provided in Part 3 below.

As per N.J.A.C. 7:8-53 requirements, different non-structural stormwater management

strategies have been implemented to the design, namely:

1. The impervious surfaces are minimized on the project site in order to meet current codes.

The runoff over the impervious surfaces flows into the proposed stormwater systems.

- 2. Natural drainage features and vegetation are maintained and maximized where possible.
- 3. While the majority of the improvements being proposed are located in areas that haven't

been previously developed, the existing drainage pattern was maintained.

4. Some tree clearing will be required, but the improvements located in those areas are

composed mostly of walkways and are being used to catch up to existing grade. No

buildings are being proposed in areas that are being cleared.

- 5. Additional disturbance is being minimized by concentrating the development and all
 - access to ancillary facilities while maintaining an adequate buffer between the remaining

residential property and adjacent residential lots.

Part 2: Review of Local Stormwater Management Regulations

Title and date of stormwater management regulations used in development design:

N.J.A.C. 7:8 - June 20, 2016
Do regulations include nonstructural requirements? Yes: No:
If yes, briefly describe: Protect areas that provide water quality benefits, minimize
impervious surfaces, maximize the protection of natural drainage features and
vegetation, minimize land disturbance and soil compaction (N.J.A.C. 7:8-5.3).
List LID-BMPs prohibited by local regulations: <u>N/A</u>
Pre-design meeting held? Yes: X Date: 7/2020 No:
Meeting held with: Municipal Engineer, R. Clerico
Pre-design site walk held? Yes: X Date: 9/2020 No:
Site walk held with: Design Engineer
Other agencies with stormwater review jurisdiction:
Name: Town of Clinton Land Use Board
Required approval: Preliminary and Final Major Site Plan
Name: Hunterdon County Soil Conservation District
Required approval: Soil Erosion & Sediment Control Plan Certification
Name:
Required approval:

Part 3: Nonstructural Strategies and LID-BMPs in Design

3.1 Vegetation and Landscaping

Effective management of both existing and proposed site vegetation can reduce a development's adverse impacts on groundwater recharges and runoff quality and quantity. This section of the checklist helps identify the vegetation and landscaping strategies and nonstructural LID-BMPs that have been incorporated into the proposed development's design to help maintain existing recharge rates and/or minimize or prevent increases in runoff quantity and pollutant loading.

A.	Has an inventory of existing site vegetation been performed? Yes:	No:	X
	If yes, was this inventory a factor in the site's layout and design? Yes:	No:	
B.	Does the site design utilize any of the following nonstructural LID-BMPs?		

Preservation of natural areas?	Yes:	Х	No:	If yes, specify % of site: 40% +/-
Native ground cover?	Yes:	Х	No:	If yes, specify % of site: 30% +/-
Vegetated buffers?	Yes:	Х	No:	If yes, specify % of site: 10% +/-

C. Do the land development regulations require these nonstructural LID-BMPs?

Preservation of natural areas?	Yes:	No:	Х	If yes, specify % of site:
Native ground cover?	Yes:	No:	Х	If yes, specify % of site:
Vegetated buffers?	Yes:	No:	Х	If yes, specify % of site:

D. If vegetated filter strips or buffers are utilized, specify their functions:

Reduce runoff volume increases through lower runoff coefficient:	Yes:	No:	Χ
Reduce runoff pollutant loads through runoff treatment:	Yes:	No:	Χ
Maintain groundwater recharge by preserving natural areas:	Yes:	No:	

3.2 Minimize Land Disturbance

Minimizing land disturbance is a nonstructural LID-BMP that can be applied during both the development's construction and post-construction phases. This section of the checklist helps identify those land disturbance strategies and nonstructural LID-BMPs that have been incorporated into the proposed development's design to minimize land disturbance and the resultant change in the site's hydrologic character.

A.	Have inventories of existing site soils and slopes been performed?			
	If yes, were these inventories factors in the site's layout and design?	Yes: _	X	No:
B.	Does the development's design utilize any of the following nonstruc	tural l	LID-BMPs?	
	Restrict permanent site disturbance by land owners?	Yes: _		No: X
	If yes, how:			
	Restrict temporary site disturbance during construction?	Yes: _	Х	No:
	If yes, how: Access to the property is limited to the construct	ction e	entrance o	only. The
	limit of disturbance will be fenced to prevent encroachmen	nt by e	equipmen	t or materials.
	Consider soils and slopes in selecting disturbance limits?	Yes: _	X	No:
	If yes, how: Slope disturbance was limited to the greatest ex	ktents	possible,	while also
	proposing a safe design.			
C.	Specify percentage of site to be cleared: _80%	_ Regi	raded:	80%
D.	Specify percentage of cleared areas done so for buildings:	6		
	For driveways and parking: 20% For roadw			

E. What design criteria and/or site changes would be required to reduce the percentages in C and D above?

In order to reduce the	ne percentages listed	in C and D, the projec	t slope would need

	to be significantly reduced.				
F.	Specify site's hydrologic soil group (HSG) percentages:				
	HSG A: HSG B: HSG C: HSG D:				
G.	Specify percentage of each HSG that will be permanently disturbed:				
	HSG A: HSG B: HSG C: HSG D:				

H.Locating site disturbance within areas with less permeable soils (HSG C and D) and minimizing disturbance within areas with greater permeable soils (HSG A and B) can help maintain groundwater recharge rates and reduce runoff volume increases. In light of the HSG percentages in F and G above, what other practical measures if any can be taken to achieve this?

The site is composed entirely of HSG B, site underlain by limestone and is in a known carbonate rock area, therefore no groundwater infiltration is proposed as part of this project.

I. Does the site include Karst topography?

Yes: X No: _____

If yes, discuss measures taken to limit Karst impacts:

The site underlain by limestone and is in a known carbonate

rock area, therefore no groundwater infiltration is proposed as part of this project. The proposed basin has an underdrain system and an impermeable synthetic liner beneath to limit infiltration.

3.3 Impervious Area Management

New impervious surfaces at a development site can have the greatest adverse effect on groundwater recharge and stormwater quality and quantity. This section of the checklist helps identify those nonstructural strategies and LID-BMPs that have been incorporated into a proposed development's design to comprehensively manage the extent and impacts of new impervious surfaces.

A.	Specify impervious cover at site: Existing:	0 acres	Proposed: _	6.49 acres
B.	Specify maximum site impervious coverage	e allowed by regulati	ions: 50%	(6.58 acres)

C. Compare proposed street cartway widths with those required by regulations:

Type of Street	Proposed Cartway Width (feet)	Required Cartway Width (feet)
Residential access – low intensity		
Residential access – medium intensity		
Residential access – high intensity with parking		
Residential access – high intensity without parking		
Neighborhood		
Minor collector – low intensity without parking		
Minor collector – with one parking lane		
Minor collector – with two parking lanes		
Minor collector – without parking		/
Major collector		/

D. Compare proposed parking space dimensions with those required by regulations:

Proposed:	N/A	Regulations:	N/A
1 -		0	

E. Compare proposed number of parking spaces with those required by regulations:

Proposed:	N/A	Regulations:	N/A
1		0	

	e of total site impervious cove parking: N/A	, .	
by unveways and	parking	by roadways	
G. What design criter	ria and/or site changes would	be required to reduce th	ne percentages in F above?
In order to redu	ice the total site impervio	us cover created by b	buildings, the entire
scope of the pr	oject would need to be re	duced.	
H. Specify percentage	e of total impervious area that	will be unconnected:	
Total site: 0%	Buildings: Driv	eways and parking:(0% Roads: 0%
	U		
	e of total impervious area that		
Total site: 0%	Buildings: 0% Driv	eways and parking:	0% Roads: 0%

I.	Specify percentage of total building roof area that will be vegetated:	0%
5		

L.	Specify percentage of total parking located within multi-level parking deck:	N/A

3.4 Time of Concentration Modifications

Decreasing a site's time of concentration (Tc) can lead directly to increased site runoff rates which, in turn, can create new and/or aggravate existing erosion and flooding problems downstream. This section of the checklist helps identify those nonstructural strategies and LID-BMPs that have been incorporated into the proposed development's design to effectively minimize such Tc decreases.

When reviewing Tc modification strategies, it is important to remember that a drainage area's Tc should reflect the general conditions throughout the area. As a result, Tc modifications must generally be applied throughout a drainage area, not just along a specific Tc route.

A. Specify percentage of site's total stormwater conveyance system length that will be:

Storm sewer: 50% +/- Veget	ated swale: 0%	Natural channel:	0%
Stormwater management facility: _	50% +/-	Other:	

Note: the total length of the stormwater conveyance system should be measured from the site's downstream property line to the downstream limit of sheet flow at the system's headwaters.

B. What design criteria and/or site changes would be required to reduce the storm sewer percentages and increase the vegetated swale and natural channel percentages in A above?

In order to reduce the storm sewer percentages and increase the vegetated swale and natural channel percentages, the project would need to be significantly altered. Due to

the existing topography, swales are unsuitable and were excluded from the design.

C. In conveyance system subareas that have overland or sheet flow over impervious surfaces or turf grass, what practical and effective site changes can be made to:

Decrease overland flow slope: _ The project was designed in part to maintain accessibility,

thus it would need need to be significantly modified in order to decrease overland

flow slope.

Increase overland flow roughness: The project would need need to be significantly modified in order to increase overland flow roughness. Due to the proposed use, it is impractical

to make any modifications without affecting the layout and usability of the facilities.

3.5 Preventative Source Controls

The most effective way to address water quality concerns is by pollution prevention. This section of the checklist helps identify those nonstructural strategies and LID-BMPs that have been incorporated into the proposed development's design to reduce the exposure of pollutants to prevent their release into the stormwater runoff.

A. Trash Receptacles

	Specify the number of trash receptacles provided:	1 large trash compactor/dumpster
	Specify the spacing between the trash receptacles:	N/A
	Compare trash receptacles proposed with those re	
	Proposed: Regulations:	N/A
В.	Pet Waste Stations	
	Specify the number of pet waste stations provided	0
	Specify the spacing between the pet waste stations	
	Compare pet waste stations proposed with those r	required by regulations:
	Proposed: N/A Regulations:	N/A

- C. Inlets, Trash Racks, and Other Devices that Prevent Discharge of Large Trash and Debris Specify percentage of total inlets that comply with the NJPDES storm drain inlet criteria: <u>100%</u>
- D. Maintenance

Specify the frequency of the following maintenance activities:

Street sweeping:	Proposed: N/A	_ Regulations: _	N/A
Litter collection:	Proposed: per township	_ Regulations: _	N/A

Identify other stormwater management measures on the site that prevent discharge of large trash and debris:

Inlet silt sacks and NJDEPS-approved inlets grates.

E. Prevention and Containment of Spills

Identify locations where pollutants are located on the site, and the features that prevent these pollutants from being exposed to stormwater runoff:

Pollutant:	N/A	Location:	N/A	
Feature utilized to	prevent pollutant exposi	are, harmful accumulation, o	or contain spills:	
Pollutant:	N/A	Location:	N/A	
Feature utilized to	prevent pollutant exposi	are, harmful accumulation, o	or contain spills:	
Pollutant:	N/A	Location:	N/A	
Feature utilized to	prevent pollutant exposi	are, harmful accumulation, o	or contain spills:	
Pollutant:	N/A	Location:	N/A	
Feature utilized to	prevent pollutant exposi	are, harmful accumulation, o	or contain spills:	
Pollutant:	N/A	Location:	N/A	

Part 4: Compliance with Nonstructural Requirements of NJDEP Stormwater Management Rules

1. Based upon the checklist responses above, indicate which nonstructural strategies have been incorporated into the proposed development's design in accordance with N.J.A.C. 7:8-5.3(b):

No.	Nonstructural Strategy	Yes	No
1.	Protect areas that provide water quality benefits or areas particularly susceptible to erosion and sediment loss.	Х	
2.	Minimize impervious surfaces and break up or disconnect the flow of runoff over impervious surfaces.	Х	
3.	Maximize the protection of natural drainage features and vegetation.	Х	
4.	Minimize the decrease in the pre-construction time of concentration.	Х	
5.	Minimize land disturbance including clearing and grading.	Х	
6.	Minimize soil compaction.	Х	
7.	Provide low maintenance landscaping that encourages retention and planting of native vegetation and minimizes the use of lawns, fertilizers, and pesticides.	Х	
8.	Provide vegetated open-channel conveyance systems discharge into and through stable vegetated areas.	Х	
9.	Provide preventative source controls.	Х	

2. For those strategies that have not been incorporated into the proposed development's design, provide engineering, environmental, and/or safety reasons. Attached additional pages as necessary.

All strategies have been incorporated into the proposed development's design.